Citation: TOMINAGA Chiaki, HIKOSOU Dailo, OSAKA Issey, KAWASAK Hideya. Ag7(MBISA)6 Nanoclusters Conjugated with Quinacrine for FRET-Enhanced Photodynamic Activity under Visible Light Irradiation[J]. Acta Physico-Chimica Sinica, ;2018, 34(7): 805-811. doi: 10.3866/PKU.WHXB201710271 shu

Ag7(MBISA)6 Nanoclusters Conjugated with Quinacrine for FRET-Enhanced Photodynamic Activity under Visible Light Irradiation

  • Corresponding author: KAWASAK Hideya, hkawa@kansai-u.ac.jp
  • Received Date: 11 September 2017
    Revised Date: 14 October 2017
    Accepted Date: 20 October 2017
    Available Online: 27 July 2017

    Fund Project: The project was supported by the JSPS KAKENHI, Japan (15H03520, 15H03526, and 26107719), and the MEXT-Supported Program for the Strategic Research Foundation at Private Universities, Japanthe JSPS KAKENHI, Japan 15H03526the JSPS KAKENHI, Japan 26107719the JSPS KAKENHI, Japan 15H03520

  • Singlet oxygen (1O2) plays an important role in various applications, such as in the photodynamic therapy (PDT) of cancers, photodynamic inactivation of microorganisms, photo-degradation of toxic compounds, and photo-oxidation in synthetic chemistry. Recently, water-soluble metal nanoclusters (NCs) have been utilized as photosensitizers for the generation of highly reactive 1O2 because of their high water solubility, low toxicity, and surface functionalizability for targeted substances. In the case of metal NC-based photosensitizers, the photo-physical properties depend on the core size of the NCs and the core/ligand interfacial structures. A wide range of atomically precise gold NCs have been reported; however, reports on the synthesis of atomically precise silver NCs are limited due to the high reactivity and low photostability (i.e., easy oxidation) of Ag NCs. In addition, there have been few reports on what kinds of metal NCs can generate large amounts of 1O2. In this study, we developed a new one-pot synthesis method of water-soluble Ag7(MBISA)6 (MBISA = 2-mercapto-5-benzimidazolesulfonic acid sodium salt) NCs with highly efficient 1O2 generation ability under the irradiation of white light emitting diodes (LEDs). The molecular formula and purity were determined by electrospray ionization mass spectrometry and gel electrophoresis. To the best of our knowledge, this is the first report on atomically precise thiolate silver clusters (Agn(SR)m) for efficient 1O2 generation under visible light irradiation. The 1O2 generation efficiency of Ag7(MBISA)6 NCs was higher than those of the following known water-soluble metal NCs: bovine serum albumin (BSA)-Au25 NCs, BSA-Ag8 NCs, BSA-Ag14 NCs, Ag25(dihydrolipoic acid)14 NCs, Ag35(glutathione)18 NCs, and Ag75(glutathione)40 NCs. The metal NCs examined in this study showed the following order of 1O2 generation efficiency under white light irradiation: Ag7(MBISA)6 > BSA-Ag14 > Ag75(SG)40 > Ag35(SG)18 > BSA-Au25 ≫ BSA-Ag8 (not detected) and Ag25(DHLA)14 (not detected). For further improving the 1O2 generation of Ag7(MBISA)6 NCs, we developed a novel fluorescence resonance energy transfer (FRET) system by conjugating Ag7(MBISA)6 NCs with quinacrine (QC) (molar ratio of Ag NCs to QC is 1 : 0.5). We observed the FRET process, from QC to Ag7(MBISA)6 NCs, occurring in the conjugate. That is, the QC works as a donor chromophore, while the Ag NCs work as an acceptor chromophore in the FRET process. The FRET-mediated process caused a 2.3-fold increase in 1O2 generation compared to that obtained with Ag7(MBISA)6 NCs alone. This study establishes a general and simple strategy for improving the PDT activity of metal NC-based photosensitizers.
  • 加载中
    1. [1]

      Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Chem. Rev. 2016, 116, 10346. doi: 10.1021/acs.chemrev.5b00703  doi: 10.1021/acs.chemrev.5b00703

    2. [2]

      Goswami, N.; Yao, Q.; Chen, T.; Xie, J. Coord. Chem. Rev. 2016, 329, 1. 10.1016/j.ccr.2016.09.001  doi: 10.1016/j.ccr.2016.09.001

    3. [3]

      Kurashige, W.; Niihori, Y.; Sharma, S.; Negishi, Y. Coord. Chem. Rev. 2016, 320, 238. 10.1016/j.ccr.2016.02.013  doi: 10.1016/j.ccr.2016.02.013

    4. [4]

      Negishi, Y.; Nobusada, K.; Tsukuda, T. J. Am. Chem. Soc. 2005, 127, 5261. doi: 10.1021/ja042218h  doi: 10.1021/ja042218h

    5. [5]

      Zhu, M.; Lanni, E.; Garg, N.; Bier, M. E.; Jin, R. J. Am. Chem. Soc. 2008, 130, 1138. doi: 10.1021/ja0782448  doi: 10.1021/ja0782448

    6. [6]

      Xie, J.; Zheng, Y.; Ying, J. Y. J. Am. Chem. Soc. 2009, 131, 888. doi: 10.1021/ja806804u  doi: 10.1021/ja806804u

    7. [7]

      Negishi, Y.; Nakazaki, T.; Malola, S.; Takano, S.; Niihori, Y.; Kurashige, W.; Yamazoe, S.; Tsukuda, T.; Häkkinen, H. J. Am. Chem. Soc. 2015, 137, 1206. doi: 10.1021/ja5109968  doi: 10.1021/ja5109968

    8. [8]

      Zhou, M.; Zeng, C.; Chen, Y.; Zhao, S.; Sfeir, M. Y.; Zhu, M.; Jin, R. Nat. Commun. 2016, 7, 13240. doi: 10.1038/ncomms13240  doi: 10.1038/ncomms13240

    9. [9]

      Yamazoe, S.; Takano, S.; Kurashige, W.; Yokoyama, T.; Nitta, K.; Negishi, Y.; Tsukuda, T. Nat. Commun. 2016, 7, 10414. doi: 10.1038/ncomms10414  doi: 10.1038/ncomms10414

    10. [10]

      Kawasaki, H.; Hamaguchi, K.; Osaka, I.; Arakawa, R. Adv. Funct. Mater. 2011, 21, 3508. doi: 10.1002/adfm.201100886  doi: 10.1002/adfm.201100886

    11. [11]

      Li, G.; Jin, R. Acc. Chem. Res. 2013, 46, 1749. doi: 10.1021/ar300213z  doi: 10.1021/ar300213z

    12. [12]

      Yoshimoto, J.; Sangsuwan, A.; Osaka, I.; Yamashita, K.; Iwasaki, Y.; Inada, M.; Arakawa, R.; Kawasaki, H. J. Phys. Chem. C 2015, 119, 14319. doi: 10.1021/acs.jpcc.5b03934  doi: 10.1021/acs.jpcc.5b03934

    13. [13]

      Song, X. R.; Goswami, N.; Yang, H. H.; Xie, J. Analyst 2016, 141, 3126. doi: 10.1039/C6AN00773B  doi: 10.1039/C6AN00773B

    14. [14]

      Sangsuwan, A.; Kawasaki, H.; Matsumura, Y.; Iwasaki, Y. Bioconjugate Chem. 2016, 27, 2527. doi: 10.1021/acs.bioconjchem.6b00455  doi: 10.1021/acs.bioconjchem.6b00455

    15. [15]

      Chakraborty, I.; Pradeep, T. Chem. Rev. 2017, 117, 8208. doi: 10.1021/acs.chemrev.6  doi: 10.1021/acs.chemrev.6

    16. [16]

      Das, T.; Ghosh, P.; Shanavas, M. S.; Maity, A.; Mondal, S.; Purkayastha, P. Nanoscale 2012, 4, 6018. doi: 10.1039/C2NR31271A  doi: 10.1039/C2NR31271A

    17. [17]

      Shibu, E. S.; Sugino, S.; Ono, K.; Saito, H.; Nishioka, A.; Yamamura, S.; Sawada, M.; Nosaka, Y.; Biju, V. Angew. Chem. Int. Ed. 2013, 52, 10559. doi: 10.1002/anie.201304264  doi: 10.1002/anie.201304264

    18. [18]

      Kawasaki, H.; Kumar, S.; Li, G.; Zeng, C.; Kauffman, D. R.; Yoshimoto, J.; Iwasaki, Y.; Jin, R. Chem. Mater. 2014, 26, 2777. doi: 10.1021/cm500260z  doi: 10.1021/cm500260z

    19. [19]

      Tao, Y.; Li, M.; Ren, J.; Qu, X. Chem. Soc. Rev. 2015, 44, 8636. doi: 10.1039/C5CS00607D  doi: 10.1039/C5CS00607D

    20. [20]

      He, F.; Yang, G.; Yang, P.; Yu, Y.; Lv, R.; Li, C.; Dai, Y.; Gai, S.; Lin, J. Adv. Funct. Mater. 2015, 25, 3966. doi: 10.1002/adfm.201500464  doi: 10.1002/adfm.201500464

    21. [21]

      Yang, D.; Yang, G.; Gai, S.; He, F.; An, G.; Dai, Y.; Lv, R.; Yang, P. Nanoscale 2015, 7, 19568. doi: 10.1039/C5NR06192J  doi: 10.1039/C5NR06192J

    22. [22]

      Lei, Q.; Hu, J. J.; Rong, L.; Cheng, H.; Sun, Y. X.; Zhang, X. Z. Molecules 2016, 21, 1103. doi: 10.3390/molecules21081103  doi: 10.3390/molecules21081103

    23. [23]

      DeRosa, M. C.; Crutchley, R. J. Coord. Chem. Rev. 2002, 233–234, 351. doi: 10.1016/S0010-8545(02)00034-6  doi: 10.1016/S0010-8545(02)00034-6

    24. [24]

      Yamamoto, M.; Osaka, I.; Yamashita, K.; Hasegawa, H.; Arakawa, R., J. Lumin. 2016, 180, 315. doi: 10.1016/j.jlumin.2016.08.059  doi: 10.1016/j.jlumin.2016.08.059

    25. [25]

      Yu, Y.; Geng, J.; Ong, E. Y. X.; Chellappan, V. Adv. Healthcare Mater. 2016, 5, 2528. doi: 10.1002/adhm.201600312  doi: 10.1002/adhm.201600312

    26. [26]

      Yuan, X.; Setyawati, M. I.; Tan, A. S.; Ong, C. N.; Leong, D. T.; Xie, J. NPG Asia Mater. 2013, 5, e39. doi:10.1038/am.2013.3  doi: 10.1038/am.2013.3

    27. [27]

      Sangsuwan, A.; Kawasaki, H.; Matsumura, Y.; Iwasaki, Y. Bioconjugate Chem. 2016, 27, 2527. doi: 10.1021/acs.bioconjchem.6b00455  doi: 10.1021/acs.bioconjchem.6b00455

    28. [28]

      Tominaga, C.; Hasegawa, H.; Yamashita, K.; Arakawa, R.; Kawasaki, H. RSC Adv. 2016, 6, 73600. doi: 10.1039/C6RA10892J  doi: 10.1039/C6RA10892J

    29. [29]

      Chakraborty, I.; Udayabhaskararao, T.; Pradeep, T. Chem. Commun. 2012, 48, 6788. doi: 10.1039/C2CC33099G  doi: 10.1039/C2CC33099G

    30. [30]

      Chin, P. T.; van der Linden, M.; van Harten, E. J.; Barendregt, A.; Rood, M. T.; Koster, A. J.; van Leeuwen, F. W.; de Mello Donega, C.; Heck, A. J.; Meijerink, A. Nanotechnology 2013, 22, 075703. doi: 10.1088/0957-4484/24/7/075703  doi: 10.1088/0957-4484/24/7/075703

    31. [31]

      Bootharaju, M. S.; Burlakov, V. M.; Besong, T. M. D.; Joshi, C. P.; AbdulHalim, L. G.; Black, D. M.; Whetten, R. L.; Goriely, A.; Bakr, O. M. Chem. Mater. 2015, 27, 4289. doi: 10.1021/acs.chemmater.5b00650  doi: 10.1021/acs.chemmater.5b00650

    32. [32]

      Zou, F.; Zhou, W.; Guan, W.; Lu, C.; Tang, B. T. Anal. Chem. 2016, 88, 9707. doi: 10.1021/acs.analchem.6b02611  doi: 10.1021/acs.analchem.6b02611

    33. [33]

      Xiang, H.; Wei, S. H.; Gong, X. J. Am. Chem. Soc. 2010, 132, 7355. doi: 10.1021/ja9108374  doi: 10.1021/ja9108374

    34. [34]

      Xu, S.; Yuan, Y.; Cai, X.; Zhang, C. J.; Hu, F.; Liang, J.; Zhang, G.; Zhang, D.; Liu, B. Chem. Sci. 2015, 6, 5824. doi: 10.1039/c5sc01733e  doi: 10.1039/c5sc01733e

    35. [35]

      Ai, H. W.; Hazelwood, K. L.; Davidson, M. W.; Campbell, R. E. Nat. Methods 2008, 5, 401. doi: 10.1038/nmeth.1207  doi: 10.1038/nmeth.1207

    36. [36]

      Zhou, W.; Cao, Y.; Sui, D.; Guan, W.; Lu, C.; Xie, J. Nanoscale 2016, 8, 9614. doi: 10.1039/C6NR02178F  doi: 10.1039/C6NR02178F

    37. [37]

      Browning, D. J. Amer. J. Ophthalmol. 2004, 137, 577. doi: 10.1016/j.ajo.2003.08.047  doi: 10.1016/j.ajo.2003.08.047

    38. [38]

      Solomon, V. R.; Almnayan. D; Lee, H. Eur. J. Med. Chem. 2017, 137, 156. doi: 10.1016/j.ejmech.2017.05.052  doi: 10.1016/j.ejmech.2017.05.052

  • 加载中
    1. [1]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    2. [2]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    3. [3]

      Fengyun LiZerong PeiShuting ChenGen liMengyang LiuLiqin DingJingbo LiuFeng Qiu . Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35(5): 108752-. doi: 10.1016/j.cclet.2023.108752

    4. [4]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

    5. [5]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    6. [6]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    7. [7]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

    8. [8]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    9. [9]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    10. [10]

      Chi ZhangNing DingYuwei PanLichun FuYing Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579

    11. [11]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    12. [12]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    13. [13]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    14. [14]

      Xinyue LanJunguang LiangChuran WenXiaolong QuanHuimin LinQinqin XuPeixian ChenGuangyu YaoDan ZhouMeng Yu . Photo-manipulated polyunsaturated fatty acid-doped liposomal hydrogel for flexible photoimmunotherapy. Chinese Chemical Letters, 2024, 35(4): 108616-. doi: 10.1016/j.cclet.2023.108616

    15. [15]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    16. [16]

      Supphachok ChanmungkalakulSyed Ali Abbas AbediFederico J. HernándezJianwei XuXiaogang Liu . The dark side of cyclooctatetraene (COT): Photophysics in the singlet states of “self-healing” dyes. Chinese Chemical Letters, 2024, 35(8): 109227-. doi: 10.1016/j.cclet.2023.109227

    17. [17]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    18. [18]

      Jiaqi HuangRenjiang KongYanmei LiNi YanYeyang WuZiwen QiuZhenming LuXiaona RaoShiying LiHong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254

    19. [19]

      Yan Cheng Hai-Quan Yao Ya-Di Zhang Chao Shi Heng-Yun Ye Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358

    20. [20]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

Metrics
  • PDF Downloads(7)
  • Abstract views(440)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return