Shock Tube Study of Methyl Pentanoate Ignition at High Temperatures
- Corresponding author: LI Ping, lpscun@scu.edu.cn
Citation: LU Pengfei, GOU Yudan, HE Jiuning, LI Ping, ZHANG Changhua, LI Xiangyuan. Shock Tube Study of Methyl Pentanoate Ignition at High Temperatures[J]. Acta Physico-Chimica Sinica, ;2018, 34(6): 618-624. doi: 10.3866/PKU.WHXB201710252
Shao, P.; He, J. Z.; Sun, P. L.; Jiang, S. T. Biosyst. Eng. 2009, 102, 285. doi: 10.1016/j.biosystemseng.2008.11.014
doi: 10.1016/j.biosystemseng.2008.11.014
Sarathy, S.; Thomson, M.; Pitz, W.; Lu, T. Proc. Combust. Inst. 2011, 33, 399. doi: 10.1016/j.proci.2010.06.058
doi: 10.1016/j.proci.2010.06.058
Dayma, G.; Sarathy, S.; Togbé, C.; Yeung, C.; Thomson, M.; Dagaut, P. Proc. Combust. Inst. 2011, 33, 1037. doi: 10.1016/j.proci.2010.05.024
doi: 10.1016/j.proci.2010.05.024
Togbe, C.; Dayma, G.; Mze-Ahmed, A.; Dagaut, P. Energy Fuels 2010, 24, 3906. doi: 10.1021/ef100484q
doi: 10.1021/ef100484q
Glaude, P. A.; Herbinet, O.; Bax, S.; Biet, J.; Warth, V.; Battin-Leclerc, F. Combust. Flame 2010, 157, 2035. doi: 10.1016/j.combustflame.2010.03.012
doi: 10.1016/j.combustflame.2010.03.012
HadjAli, K.; Crochet, M.; Vanhove, G.; Ribaucour, M.; Minetti, R. Proc. Combust. Inst. 2009, 32, 239. doi: 10.1016/j.proci.2008.09.002
doi: 10.1016/j.proci.2008.09.002
Haylett, D. R.; Davidson, D. F.; Hanson, R. K. Combust. Flame 2012, 159, 552. doi: 10.1016/j.combustflame.2011.08.021
doi: 10.1016/j.combustflame.2011.08.021
Herbinet, O.; Pitz, W. J.; Westbrook, C. K. Combust. Flame 2010, 157, 893. doi: 10.1016/j.combustflame.2009.10.013
doi: 10.1016/j.combustflame.2009.10.013
Westbrook, C. K.; Naik, C. V.; Herbinet, O.; Pitz, W. J.; Mehl, M.; Sarathy, S. M.; Curran, H. J. Combust. Flame 2011, 158, 742. doi: 10.1016/j.combustflame.2010.10.020
doi: 10.1016/j.combustflame.2010.10.020
Nguyen, V. H.; Dinh, L. T. Biosyst. Eng. 2015, 134, 1. doi: 10.1016/j.biosystemseng.2015.03.009
doi: 10.1016/j.biosystemseng.2015.03.009
Wang, W. J.; Oehlschlaeger, M. A. Combust. Flame 2012, 159, 476. doi: 10.1016/j.combustflame.2011.07.019
doi: 10.1016/j.combustflame.2011.07.019
Campbell, M. F.; Davidson, D. F.; Hanson, R. K. Fuel 2014, 126, 271. doi: 10.1016/j.fuel.2014.02.050
doi: 10.1016/j.fuel.2014.02.050
Wang, W. J.; Gowdagiri, S.; Oehlschlaeger, M. A. Combust. Flame 2014, 161, 3014. doi: 10.1016/j.combustflame.2014.06.009
doi: 10.1016/j.combustflame.2014.06.009
Campbell, M. F.; Davidson, D. F.; Hanson, R. K. Fuel 2016, 164, 151. doi: 10.1016/j.fuel.2015.09.078
doi: 10.1016/j.fuel.2015.09.078
Campbell, M. F.; Davidson, D. F.; Hanson, R. K.; Westbrook. C. K. Proc. Combust. Inst. 2013, 34, 419. doi: 10.1016/j.combustflame.2014.12.015
doi: 10.1016/j.combustflame.2014.12.015
Akih-Kumgeh, B.; Bergthorson, J. M. Combust. Flame 2011, 158, 1037. doi: 10.1016/j.combustflame.2010.10.021
doi: 10.1016/j.combustflame.2010.10.021
Zhang, Z. H.; Hu, E. J.; Peng, C.; Meng, X.; Chen, Y. Z.; Huang, Z. H. Energy Fuels 2015, 29, 2719. doi: 10.1021/acs.energyfuels.5b00316
doi: 10.1021/acs.energyfuels.5b00316
Dmitriev, A. M.; Knyazkov, D. A.; Bolshova, T. A.; Shmakov, A. G.; Korobeinichev, O. P. Combust. Flame 2015, 162, 1964. doi: 10.1016/j.combustflame.2014.12.015
doi: 10.1016/j.combustflame.2014.12.015
Dievart, P.; Won, S. E.; Gong, J.; Dooley, S.; Ju, Y. Proc. Combust. Inst. 2013, 34, 821. doi: 10.1016/j.proci.2012.06.180
doi: 10.1016/j.proci.2012.06.180
Korobeinichev, O. P.; Gerasimov, I. E.; Knyazkov, D. A.; Shmakov, A. G.; Bolshova, T. A.; Hansen, N.; Westbrook, C. K.; Dayma, G.; Yang, B. Z. Phys. Chem. 2015, 229, 759. doi: 10.1515/zpch-2014-0596
doi: 10.1515/zpch-2014-0596
Yang, B.; Westbrook, C. K.; Cool, T. A.; Hansen, N.; Kohse-Hoinghaus, K. Phys. Chem. Chem. Phys. 2011, 13, 6901. doi: 10.1039/c0cp02065f
doi: 10.1039/c0cp02065f
He, J. N.; Yong, K. L.; Zhang, W. F.; Li, P.; Zhang, C. H.; Li, X. Y. Energy Fuels 2016, 30, 8886. doi: 10.1021/acs.energyfuels.6b01122
doi: 10.1021/acs.energyfuels.6b01122
Yong, K. L.; He, J. N.; Zhang, W. F.; Xian, L. Y.; Zhang, C. H.; Li, P.; Li, X. Y. Fuel 2017, 188, 567. doi: 10.1016/j.fuel.2016.09.054
doi: 10.1016/j.fuel.2016.09.054
He, J. N.; Li. Y. L.; Zhang. C. H.; Li. P.; Li. X. Y. Acta Phys. -Chim. Sin. 2015, 31, 836.
doi: 10.3866/PKU.WHXB201503121
Darcy, D.; Tobin, C. J.; Yasunaga, K. Combust. Flame 2012, 159, 2219. doi: 10.1016/j.combustflame.2012.02.009
doi: 10.1016/j.combustflame.2012.02.009
Shen, H. P. S.; Vanderover, J.; Oehlschlaeger, M. A. Proc. Combust. Inst. 2009, 32, 165. doi: 10.1016/j.proci.2008.05.004
doi: 10.1016/j.proci.2008.05.004
Zhu, Y.; Davidson, D. F.; Hanson, R. K. Combust. Flame 2014, 161, 371. doi: 10.1016/j.proci.2008.05.004
doi: 10.1016/j.proci.2008.05.004
Knothe, G.; Cermak, S. C.; Evangelista, R. L. Energy Fuels 2009, 23, 1743. doi: 10.1021/ef800958t
doi: 10.1021/ef800958t
Akih-Kumgeh, B.; Bergthorson, J. M. Energy Fuels 2010, 24, 2439. doi: 10.1021/ef901489k
doi: 10.1021/ef901489k
Kumar, K.; Mittal, G.; Sung, C. J.; Law C. K. Combust. Flame 2008, 153, 343. doi:10.1016/j.combustflame.2007.11.012
doi: 10.1016/j.combustflame.2007.11.012
Dan-Ying Xing , Xiao-Dan Zhao , Chuan-Shu He , Bo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
Yuxin Wang , Zhengxuan Song , Yutao Liu , Yang Chen , Jinping Li , Libo Li , Jia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
Zixi Zou , Jingyuan Wang , Yian Sun , Qian Wang , Da-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972
Ruilong Geng , Lingzi Peng , Chang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433
Weijian Zhang , Xianyu Deng , Liying Wang , Jian Wang , Xiuting Guo , Lianggui Huang , Xinyi Wang , Jun Wu , Linjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422
Lan Yang , Yu Li , Mou Jiang , Rui Zhou , Hengjiang Cong , Minghui Yang , Lei Zhang , Shenhui Li , Yunhuang Yang , Maili Liu , Xin Zhou , Zhong-Xing Jiang , Shizhen Chen . Fluorinated [2]rotaxanes as sensitive 19F MRI agents: Threading for higher sensitivity. Chinese Chemical Letters, 2024, 35(10): 109512-. doi: 10.1016/j.cclet.2024.109512
Ling Tang , Yan Wan , Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345
Junmei FAN , Wei LIU , Ruitao ZHU , Chenxi QIN , Xiaoling LEI , Haotian WANG , Jiao WANG , Hongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120
Huihui LIU , Baichuan ZHAO , Chuanhui WANG , Zhi WANG , Congyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059
Neng Shi , Haonan Jia , Jixiang Zhang , Pengyu Lu , Chenglong Cai , Yixin Zhang , Liqiang Zhang , Nongyue He , Weiran Zhu , Yan Cai , Zhangqi Feng , Ting Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302
Yuxin Li , Chengbin Liu , Qiuju Li , Shun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541
Yongheng Ren , Yang Chen , Hongwei Chen , Lu Zhang , Jiangfeng Yang , Qi Shi , Lin-Bing Sun , Jinping Li , Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Wenzhong Zhang , Zirui Yan , Lingcheng Chen , Yi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582