Citation: CÁRDENAS Carlos, MUÑOZ Macarena, CONTRERAS Julia, AYERS Paul W., GÓMEZ Tatiana, FUENTEALBA Patricio. Understanding Chemical Reactivity in Extended Systems: Exploring Models of Chemical Softness in Carbon Nanotubes
[J]. Acta Physico-Chimica Sinica, ;2018, 34(6): 631-638. doi: 10.3866/PKU.WHXB201710201
shu

Understanding Chemical Reactivity in Extended Systems: Exploring Models of Chemical Softness in Carbon Nanotubes

  • Corresponding author: CÁRDENAS Carlos, cardena@macul.ciencias.uchile.cl FUENTEALBA Patricio, 
  • Received Date: 30 August 2017
    Revised Date: 12 October 2017
    Accepted Date: 17 October 2017
    Available Online: 20 June 2017

    Fund Project: This work has been supported by FONDECYT grants 1140313 and 11150164. CC and PF acknowledge support by Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia-FB0807, and project RC-130006 CILIS, granted by the Fondo de Innovación para la Competitividad del Ministerio de Economía, Fomento y Turismo de Chile. MM acknowledge supports by CONICYT through grant 21130691. PWA acknowledges support from NSERC, Compute Canada, and the Canada Research Chairs

  • Chemical reactivity towards electron transfer is captured by the Fukui function. However, this is not well defined when the system or its ions have degenerate or pseudo-degenerate ground states. In such a case, the first-order chemical response is not independent of the perturbation and the correct response has to be computed using the mathematical formalism of perturbation theory for degenerate states. Spatial pseudo-degeneracy is ubiquitous in nanostructures with high symmetry and totally extended systems. Given the size of these systems, using degenerate-state perturbation theory is impractical because it requires the calculation of many excited states. Here we present an alternative to compute the chemical response of extended systems using models of local softness in terms of the local density of states. The local softness is approximately equal to the density of states at the Fermi level. However, such approximation leaves out the contribution of inner states. In order to include and weight the contribution of the states around the Fermi level, a model inspired by the long-range behavior of the local softness is presented. Single wall capped carbon nanotubes (SWCCNT) illustrate the limitation of the frontier orbital theory in extended systems. Thus, we have used a C360 SWCCNT to test the proposed model and how it compares with available models based on the local density of states. Interestingly, a simple Hückel approximation captures the main features of chemical response of these systems. Our results suggest that density-of-states models of the softness along simple tight binding Hamiltonians could be used to explore the chemical reactivity of more complex system, such a surfaces and nanoparticles.
  • 加载中
    1. [1]

      Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford UP: New York, NY, USA, 1989.

    2. [2]

      Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p  doi: 10.1021/cr990029p

    3. [3]

      Chermette, H. J. Comput. Chem. 1999, 20, 129. doi: 10.1002/(SICI)1096-987X(19990115)20:1  doi: 10.1002/(SICI)1096-987X(19990115)20:1

    4. [4]

      Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. doi: 10.3866/PKU.WHXB20090332  doi: 10.3866/PKU.WHXB20090332

    5. [5]

      Gazquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.
       

    6. [6]

      Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101, 520. doi: 10.1002/qua.20307  doi: 10.1002/qua.20307

    7. [7]

      Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065. doi: 10.1021/cr040109f  doi: 10.1021/cr040109f

    8. [8]

      Johnson, P. A.; Bartolotti, L. J.; Ayers, P. W.; Fievez, T.; Geerlings, P. Modern Charge-Density Analysis; Springer: The Netherlands, 2012; p. 715.

    9. [9]

      Parr, R. G.; Yang, W. T. J. Am. Chem. Soc. 1984, 106, 4049. doi: 10.1021/ja00326a036  doi: 10.1021/ja00326a036

    10. [10]

      Yang, W. T.; Parr, R. G.; Pucci, R. J. Chem. Phys. 1984, 81, 2862. doi: 10.1063/1.447964  doi: 10.1063/1.447964

    11. [11]

      Yang, W. T.; Parr, R. G. Proc. Natl. Acad. Sci. USA 1985, 82, 6723. doi: 10.1073/pnas.82.20.6723  doi: 10.1073/pnas.82.20.6723

    12. [12]

      Fukui, K. Science 1982, 218, 747. doi: 10.1126/science.218.4574.747  doi: 10.1126/science.218.4574.747

    13. [13]

      Ayers, P. W.; Levy, M. Theo. Chem. Acc. 2000, 103, 353. doi: 10.1007/s002149900093  doi: 10.1007/s002149900093

    14. [14]

      Fuentealba, P.; Cardenas, C.; Pino-Rios, R.; Tiznado, W. Applications of Topological Methods in Molecular Chemistry; Springer International Publishing: Switzerland, 2016; p. 227.

    15. [15]

      Ayers, P. W.; Yang, W. T.; Bartolotti, L. J. Chemical Reactivity Theory: A Density Functional View; Chattaraj, P. K., Ed.; CRC Press: Boca Raton, FL, USA, 2009; p. 255.

    16. [16]

      Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L., Jr. Phys. Rev. Lett. 1982, 49, 1691. doi: 10.1103/PhysRevLett.49.1691  doi: 10.1103/PhysRevLett.49.1691

    17. [17]

      Chan, G. K. L. J. Chem. Phys. 1999, 110, 4710. doi: 10.1063/1.478357  doi: 10.1063/1.478357

    18. [18]

      Yang, W. T.; Zhang, Y. K.; Ayers, P. W. Phys. Rev. Lett. 2000, 84, 5172. doi: 10.1103/PhysRevLett.84.5172  doi: 10.1103/PhysRevLett.84.5172

    19. [19]

      Cohen, M. H.; Wasserman, A. Isr. J. Chem. 2003, 43, 219. doi: 10.1560/3R9J-FHB5-51UV-C4BJ  doi: 10.1560/3R9J-FHB5-51UV-C4BJ

    20. [20]

      Ayers, P. W. J. Math. Chem. 2008, 43, 285. doi: 10.1007/s10910-006-9195-5  doi: 10.1007/s10910-006-9195-5

    21. [21]

      Cohen, A. J.; Mori-Sanchez, P.; Yang, W. T. Science 2008, 321, 792. doi: 10.1126/science.1158722  doi: 10.1126/science.1158722

    22. [22]

      Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 1978, 68, 3801. doi: 10.1063/1.436185  doi: 10.1063/1.436185

    23. [23]

      Nalewajski, R. F.; Kozlowski, P. M. Acta Phys. Polon. 1986, A70, 457.

    24. [24]

      Cárdenas, C.; Heidar-Zadeh, F.; Ayers, P. W. Phys. Chem. Chem. Phys. 2016, 18, 25721. doi: 10.1039/C6CP04533B  doi: 10.1039/C6CP04533B

    25. [25]

      Sablon, N.; De Proft, F.; Ayers, P. W.; Geerlings, P. J. Chem. Phys. 2007, 126, 224108. doi: 224108/Artn 224108  doi: 10.1063/1.2736698

    26. [26]

      Fievez, T.; Sablon, N.; De Proft, F.; Ayers, P. W.; Geerlings, P. J. Chem. Theory Comput. 2008, 4, 1065. doi: 10.1021/ct800027e  doi: 10.1021/ct800027e

    27. [27]

      Fuentealba, P.; Chamorro, E.; Cárdenas, C. Int. J. Quantum Chem. 2007, 107, 37. doi: 10.1002/qua.21021  doi: 10.1002/qua.21021

    28. [28]

      Bartolotti, L. J.; Ayers, P. W. J. Phys. Chem. A 2005, 109, 1146. doi: 10.1021/jp0462207  doi: 10.1021/jp0462207

    29. [29]

      Echegaray, E.; Rabi, S.; Cardenas, C.; Zadeh, F. H.; Rabi, N.; Lee, S.; Anderson, J. S.; Toro-Labbe, A.; Ayers, P. W. J. Mol. Model. 2014, 20, 1. doi: 10.1007/s00894-014-2162-3  doi: 10.1007/s00894-014-2162-3

    30. [30]

      Cardenas, C.; Ayers, P. W.; Cedillo, A. J. Chem. Phys. 2011, 134, 174103. doi: 10.1063/1.3585610  doi: 10.1063/1.3585610

    31. [31]

      Bultinck, P.; Cardenas, C.; Fuentealba, P.; Johnson, P. A.; Ayers, P. W. J. Chem. Theory Comput. 2013, 10, 202. doi: 10.1021/ct400874d  doi: 10.1021/ct400874d

    32. [32]

      Bultinck, P.; Cardenas, C.; Fuentealba, P.; Johnson, P. A.; Ayers, P. W. J. Chem. Theory Comput. 2013, 9, 4779. doi: 10.1021/ct4005454  doi: 10.1021/ct4005454

    33. [33]

      Bultinck, P.; Jayatilaka, D.; Cardenas, C. Comput. Theor. Chem. 2015, 1053, 106. doi: 10.1016/j.comptc.2014.06.017  doi: 10.1016/j.comptc.2014.06.017

    34. [34]

      Avouris, P. Accounts Chem. Res. 2002, 35, 1026. doi: 10.1021/ar010152e  doi: 10.1021/ar010152e

    35. [35]

      Fowler, P. W.; Manopoulos, D. E. An Atlas of Fullerene; Oxford Press University: Oxford, UK, 1995.

    36. [36]

      Banerjee, S.; Hemraj-Benny, T.; Wong, S. S. Adv. Mater. 2005, 17, 17. doi: 10.1002/adma.200401340  doi: 10.1002/adma.200401340

    37. [37]

      Fowler, P. W. Contemp. Phys. 1996, 37, 235. doi: 10.1080/00107519608217530  doi: 10.1080/00107519608217530

    38. [38]

      Prodan, E.; Kohn, W. Proc. Natl. Acad. Sci. USA 2005, 102, 11635. doi: 10.1073/pnas.0505436102  doi: 10.1073/pnas.0505436102

    39. [39]

      Prodan, E. Phys. Rev. B 2006, 73, 085108. doi: 10.1103/PhysRevB.73.085108  doi: 10.1103/PhysRevB.73.085108

    40. [40]

      Cardenas, C.; Rabi, N.; Ayers, P. W.; Morell, C.; Jaramillo, P.; Fuentealba, P. J. Phys. Chem. A 2009, 113, 8660. doi: 10.1021/jp902792n  doi: 10.1021/jp902792n

    41. [41]

      Flores-Moreno, R. J. Chem. Theory Comput. 2009, 6, 48. doi: 10.1021/ct9002527  doi: 10.1021/ct9002527

    42. [42]

      Martínez, J. Chem. Phys. Lett. 2009, 478, 310. doi: 10.1016/j.cplett.2009.07.086  doi: 10.1016/j.cplett.2009.07.086

    43. [43]

      Pino-Rios, R.; Ya ez, O.; Inostroza, D.; Ruiz, L.; Cardenas, C.; Fuentealba, P.; Tiznado, W. J. Comput. Chem. 2017, 38, 481. doi: 10.1002/jcc.24699  doi: 10.1002/jcc.24699

    44. [44]

      Berkowitz, M.; Parr, R. G. J. Chem. Phys. 1988, 88, 2554. doi: 10.1063/1.454034  doi: 10.1063/1.454034

    45. [45]

      Cohen, M. H.; Ganduglia-Pirovano, M. V. J. Chem. Phys. 1994, 101, 8988. doi: 10.1063/1.468026  doi: 10.1063/1.468026

    46. [46]

      Cohen, M. H.; Ganduglia-Pirovano, M. V.; Kudrnovsky, J. J. Chem. Phys. 1995, 103, 3543. doi: 10.1063/1.470238  doi: 10.1063/1.470238

    47. [47]

      Cohen, M. H.; Ganduglia-Pirovano, M. V.; Kudrnovsky, J. Phys. Rev. Lett. 1994, 72, 3222. doi: 10.1103/PhysRevLett.72.3222  doi: 10.1103/PhysRevLett.72.3222

    48. [48]

      Cohen, M. H. Top. Curr. Chem. Density Functional Theory Ⅳ; Springer-Verlag, Berlin, Germany, 1996; Vol. 183, p. 143.

    49. [49]

      Santos, J. C.; Contreras, R.; Chamorro, E.; Fuentealba, P. J. Chem. Phys. 2002, 116, 4311. doi: 10.1063/1.1449944  doi: 10.1063/1.1449944

    50. [50]

      Alzate-Morales, J. H.; Tiznado, W.; Santos, J. C.; Cardenas, C.; Contreras, R. J. Phys. Chem. B 2007, 111, 3293. doi: 10.1021/jp064549h  doi: 10.1021/jp064549h

    51. [51]

      Santos, J. C.; Chamorro, E.; Contreras, R.; Fuentealba, P. Chem. Phys. Lett. 2004, 383, 612. doi: 10.1016/j.cplett.2003.11.083  doi: 10.1016/j.cplett.2003.11.083

    52. [52]

      Brommer, K. D.; Galván, M.; Dal Pino, A.; Joannopoulos, J. D. Surf. Sci. 1994, 314, 57. doi: 10.1016/0039-6028(94)90212-7  doi: 10.1016/0039-6028(94)90212-7

    53. [53]

      Nguyen, L. T.; De Proft, F.; Amat, M. C.; Van Lier, G.; Fowler, P. W.; Geerlings, P. J. Phys. Chem. A 2003, 107, 6837. doi: 10.1021/jp034388  doi: 10.1021/jp034388

    54. [54]

      Cardenas, C.; De Proft, F.; Chamorro, E.; Fuentealba, P.; Geerlings, P. J. Chem. Phys. 2008, 128, 034708. doi: 10.1063/1.2819239  doi: 10.1063/1.2819239

    55. [55]

      Morrell, M. M.; Parr, R. G.; Levy, M. J. Chem. Phys. 1975, 62, 549. doi: 10.1063/1.430509  doi: 10.1063/1.430509

    56. [56]

      Katriel, J.; Davidson, E. R. Proc. Natl. Acad. Sci. USA 1980, 77, 4403. doi: 10.1073/pnas.77.8.4403  doi: 10.1073/pnas.77.8.4403

    57. [57]

      Hoffmann-Ostenhof, M.; Hoffmann-Ostenhof, T. Phys. Rev. A 1977, 16, 1782. doi: 10.1103/PhysRevA.16.1782  doi: 10.1103/PhysRevA.16.1782

    58. [58]

      Ahlrichs, R.; Hoffmann-Ostenhof, M.; Hoffmann-Ostenhof, T.; Morgan, J. D., Ⅲ. Phys. Rev. A 1981, 23, 2106. doi: 10.1103/PhysRevA.23.2106  doi: 10.1103/PhysRevA.23.2106

    59. [59]

      Levy, M.; Perdew, J. P.; Sahni, V. Phys. Rev. A 1984, 30, 2745. doi: 10.1103/PhysRevA.30.2745  doi: 10.1103/PhysRevA.30.2745

    60. [60]

      Handy, N. C.; Marron, M. T.; Silverstone, H. J. Phys. Rev. 1969, 180, 45. doi: 10.1103/PhysRev.180.45  doi: 10.1103/PhysRev.180.45

    61. [61]

      Yang, W. T.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708. doi: 10.1021/ja00279a008  doi: 10.1021/ja00279a008

    62. [62]

      Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833. doi: 10.1063/1.1740588  doi: 10.1063/1.1740588

  • 加载中
    1. [1]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    2. [2]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    3. [3]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    4. [4]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    5. [5]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    6. [6]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    7. [7]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    8. [8]

      Fenglin JiangAnan LiuQian WeiYoucai Hu . Editing function of type Ⅱ thioesterases in the biosynthesis of fungal polyketides. Chinese Chemical Letters, 2024, 35(10): 109504-. doi: 10.1016/j.cclet.2024.109504

    9. [9]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    10. [10]

      Xuebing JiangSiyi WangLi ZhangXian JiangMaling Gou . Lidocaine hydrochloride loaded isomaltulose microneedles for efficient local anesthesia of the skin. Chinese Chemical Letters, 2024, 35(4): 108686-. doi: 10.1016/j.cclet.2023.108686

    11. [11]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    12. [12]

      Supphachok ChanmungkalakulSyed Ali Abbas AbediFederico J. HernándezJianwei XuXiaogang Liu . The dark side of cyclooctatetraene (COT): Photophysics in the singlet states of “self-healing” dyes. Chinese Chemical Letters, 2024, 35(8): 109227-. doi: 10.1016/j.cclet.2023.109227

    13. [13]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    14. [14]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    15. [15]

      Ruru LiQian LiuHui LiFengbin SunZhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679

    16. [16]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    17. [17]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    18. [18]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    19. [19]

      Longsheng ZhanYuchao WangMengjie LiuXin ZhaoDanni DengXinran ZhengJiabi JiangXiang XiongYongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695

    20. [20]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

Metrics
  • PDF Downloads(5)
  • Abstract views(227)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return