Citation: LI Wentao, YONG Jiale, YANG Qing, CHEN Feng, FANG Yao, HOU Xun. Oil-Water Separation Based on the Materials with Special Wettability[J]. Acta Physico-Chimica Sinica, ;2018, 34(5): 456-475. doi: 10.3866/PKU.WHXB201709211 shu

Oil-Water Separation Based on the Materials with Special Wettability

  • Corresponding author: YANG Qing, yangqing@mail.xjtu.edu.cn CHEN Feng, chenfeng@mail.xjtu.edu.cn
  • Received Date: 29 August 2017
    Revised Date: 12 September 2017
    Accepted Date: 13 September 2017
    Available Online: 21 May 2017

    Fund Project: China Postdoctoral Science Foundation 2016M600786the National Natural Science Foundation of China 51335008the National Natural Science Foundation of China and the China Academy of Engineering Physics (NSAF) U1630111the National Key Research and Development Program of China 2017YFB1104700the National Natural Science Foundation of China 61475124The project was supported by the National Natural Science Foundation of China (51335008, 61475124), Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (NSAF) (U1630111), the National Key Research and Development Program of China (2017YFB1104700) and China Postdoctoral Science Foundation (2016M600786)

  • The frequency of oil-spill accidents and industrial wastewater discharges have caused severe water pollution, not only resulting in huge economic losses but also threatening the ecological system. Recently, researchers have developed different types of materials with special wettability (such as superhydrophobicity or superoleophobicity) and used them successfully for oil-water separation. Superhydrophobic and superoleophobic surfaces can generally be obtained by designing the surface geometric micro-topography and chemical composition of solid materials. Endowing porous materials with reverse super-wettability to water and oil using various microfabrication technologies is the key to separate oil-water mixtures. In this review we initially identify the significance of fabricating oil/water-separating materials and achieving effective separations. Then, the typical theoretical principles underlying surface wettability are briefly introduced. According to the difference in surface wettabilities toward water and oil, we classify the current oil-water separating materials into three categories: (ⅰ) superhydrophobic/superoleophilic materials, (ⅱ) superoleophobic/ superhydrophilic materials, and (ⅲ) smart-response materials with switchable wettability. This review summarizes the representative research work for each of these materials, including their fabrication methods, principle and process of oil-water separation, and main characteristics and applications. Finally, existing problems, challenges, and future prospects of this fast-growing field of special wettability porous materials for the separation of oil-water mixtures are discussed.
  • 加载中
    1. [1]

       

    2. [2]

       

    3. [3]

       

    4. [4]

      Wang, B.; Liang, W. X.; Guo, Z. G.; Liu, W. M. Chem. Soc. Rev. 2015, 44, 336. doi: 10.1039/c4cs00220b  doi: 10.1039/c4cs00220b

    5. [5]

      Xue, Z. X.; Cao, Y. Z.; Liu, N.; Feng, L.; Jiang, L. J. Mater. Chem. A 2014, 2, 2445. doi: 10.1039/c3ta13397d  doi: 10.1039/c3ta13397d

    6. [6]

      Chu, Z. L.; Feng, Y. J.; Seeger, S. Angew. Chem. Int. Ed. 2015, 54, 2328. doi: 10.1002/anie.201405785  doi: 10.1002/anie.201405785

    7. [7]

      Wen, L. P.; Tian, Y.; Jiang, L. Angew. Chem. Int. Ed. 2015, 54, 3387. doi: 10.1002/anie.201409911  doi: 10.1002/anie.201409911

    8. [8]

      Ma, Q. L.; Cheng, H. F.; Fane, A. G.; Wang, R.; Zhang, H. Small 2016, 16, 2186. doi: 10.1002/smll.201503685  doi: 10.1002/smll.201503685

    9. [9]

      Yong, J. L.; Chen, F.; Yang, Q.; Hou, J. L.; Hou, X. Chem. Soc. Rev. 2017, doi: 10.1039/c6cs00751a  doi: 10.1039/c6cs00751a

    10. [10]

      Gupta, R. K.; Dunderdale, G. J.; England M. W.; Hozumi A. J. Mater. Chem. A. 2017, 16025, 5. doi: 10.1039/c7ta02070h  doi: 10.1039/c7ta02070h

    11. [11]

      Xia, F.; Jiang, L. Adv. Mater. 2008, 20, 2842. doi: 10.1002/adma.200800836  doi: 10.1002/adma.200800836

    12. [12]

      Barthlott, W.; Neinhuis, C. Planta 1997, 202, 1. doi: 10.1007/s004250050096  doi: 10.1007/s004250050096

    13. [13]

      Zorba, V.; Stratakis, E.; Barberoglou, M.; Spanakis, E.; Tzanetakis, P.; Anastasiadis, S. H.; Fotakis, C. Adv. Mater. 2008, 20, 4049. doi: 10.1002/adma.200800651  doi: 10.1002/adma.200800651

    14. [14]

      Feng, L.; Zhang, Y. N.; Xi, J. M.; Zhu, Y.; Wang, N.; Xia, F.; Jiang L. Langmuir 2008, 24, 4114. doi: 10.1021/la703821h  doi: 10.1021/la703821h

    15. [15]

      Feng, L.; Li, S. H.; Li, Y. S.; Li, H. J.; Zhang, J. L.; Zhai, J.; Song, Y. L.; Liu, B. Q.; Jiang, L.; Zhu, D. B. Adv. Mater. 2002, 14, 1857. doi: 10.1002/adma.200290020  doi: 10.1002/adma.200290020

    16. [16]

      Wu, D.; Wang, J. N.; Wu, S. Z.; Chen, Q. D.; Zhao, S.; Zhang, H.; Sun, H. B.; Jiang, L. Adv. Funct. Mater. 2011, 21, 2927. doi: 10.1002/adfm.201002733  doi: 10.1002/adfm.201002733

    17. [17]

      Zheng, Y. M.; Gao, X. F.; Jiang, L. Soft Matter 2007, 3, 178. doi: 10.1039/B612667G  doi: 10.1039/B612667G

    18. [18]

      Gao, X. F.; Jiang, L. Nature 2004, 432, 36. doi: 10.1038/432036a  doi: 10.1038/432036a

    19. [19]

      Hu, D. L.; Chan, B.; Bush, J. M. Nature 2003, 424, 663. doi:10.1038/nature01793  doi: 10.1038/nature01793

    20. [20]

      Gao, X.; Yan, X.; Yao, X.; Xu, L.; Zhang, K.; Zhang, J.; Yang, B.; Jiang, L. Adv. Mater. 2007, 19, 2213. doi: 10.1002/adma.200601946  doi: 10.1002/adma.200601946

    21. [21]

      Liu M J, Wang S T, Wei Z X, Song Y L, Jiang L. Adv. Mater. 2009, 21, 665. doi: 10.1002/adma.200801782  doi: 10.1002/adma.200801782

    22. [22]

      Liu, X. L.; Zhou, J.; Xue, Z. X.; Gao, J.; Meng, J. X.; Wang, S. T.; Jiang, L. Adv. Mater. 2012, 24, 3401. doi: 10.1002/adma.201200797  doi: 10.1002/adma.201200797

    23. [23]

      Feng, L.; Zhang, Z. G.; Mai, Z. H.; Ma, Y. M.; Liu, B. Q.; Jiang, L. Angew. Chem. Int. Ed. 2004, 43, 2012. doi: 10.1002/anie.200353381  doi: 10.1002/anie.200353381

    24. [24]

      Tian, D. L.; Zhang, X. F.; Wang, X.; Zhai, J.; Jiang, L. Phys. Chem. Chem. Phys. 2011, 13, 14606. doi: 10.1039/C1CP20671K  doi: 10.1039/C1CP20671K

    25. [25]

      Wang, C. F.; Tzeng, F. S.; Chen, H. G.; Chang, C. J. Langmuir 2012, 28, 10015. doi: 10.1021/la301839a  doi: 10.1021/la301839a

    26. [26]

      Xue, Z.; X.; Wang, S. T.; Lin, L.; Chen, L.; Liu, M. J.; Feng, L.; Jiang, L. Adv. Mater. 2011, 23, 4270. doi: 10.1002/adma.201102616  doi: 10.1002/adma.201102616

    27. [27]

      Wen, Q.; Di, J. C.; Jiang, L.; Yu, J. H.; Xu, R. R. Chem. Sci. 2013, 4, 591. doi: 10.1039/C2SC21772D  doi: 10.1039/C2SC21772D

    28. [28]

      Deng, D.; Prendergast, D. P.; MacFarlane, J.; Bagatin, R.; Stellacci.; F.; Gschwend, P. M. ACS. Mater. Interface 2013, 5, 774. doi: 10.1021/am302338x  doi: 10.1021/am302338x

    29. [29]

      Li, J.; Kang, R.M.; Tang, X. H.; She, H. D.; Yang, Y. X.; Zha, F. Nanoscale 2016, 8, 7638. doi: 10.1039/c6nr01298a  doi: 10.1039/c6nr01298a

    30. [30]

      Song, J. L.; Huang, S.; Lu, Y.; Bu, X. W.; Mates, J. E.; Ghosh, A.; Ganguly, R.; Carmalt, C. J.; Parkin, I. P.; Xu, W. J.; Megaridis, C. M. ACS Appl. Mater. Interfaces 2014, 6, 19858. doi: 10.1021/am505254j  doi: 10.1021/am505254j

    31. [31]

      Howarter, J. A.; Youngblood, J. P. J. Colloid Interface Sci. 2009, 329, 127. doi: 10.1016/j.jcis.2008.09.068  doi: 10.1016/j.jcis.2008.09.068

    32. [32]

      Yang, J.; Zhang, Z. Z.; Xu, X. H.; Zhu, X. T.; Men, X. H.; Zhou, X. Y. J. Mater. Chem. 2012, 22, 2834. doi: 10.1039/c2jm15987b  doi: 10.1039/c2jm15987b

    33. [33]

      Zhang, Y. L.; Xia, H.; Kim, E.; Sun, H. B. Soft Matter 2012, 8, 11217. doi: 10.1039/C2SM26517F  doi: 10.1039/C2SM26517F

    34. [34]

      Wang, Q.; Cui, Z.; Xiao, Y.; Chen, Q. Appl. Surf. Sci. 2007, 253, 9054. doi: 10.1016/j.apsusc.2007.05.030  doi: 10.1016/j.apsusc.2007.05.030

    35. [35]

      Su, C. H.; Xu, Y.; Zhang, W.; Liu, Y.; Li, J. Appl. Surf. Sci. 2012, 258, 2319. doi: 10.1016/j.apsusc.2011.10.005  doi: 10.1016/j.apsusc.2011.10.005

    36. [36]

      Li, H.; Zheng, M.; Ma, L.; Zhu, C.; Lu, S. Mater. Res. Bull. 2013, 48, 25. doi: 10.1016/j.materresbull.2012.09.062  doi: 10.1016/j.materresbull.2012.09.062

    37. [37]

      La, D. D.; Anh, N. T.; Lee, S.; Kim, J. W.; Kim, Y. S. Appl. Surf. Sci. 2011, 257, 5705. doi: 10.1016/j.apsusc.2011.01.078  doi: 10.1016/j.apsusc.2011.01.078

    38. [38]

      Li, T. T.; Shen, J.; Zhang, Z.; Wang, S.; Wei, D. Y. RSC Adv. 2016, 6, 40656. doi: 10.1039/C6RA01820C  doi: 10.1039/C6RA01820C

    39. [39]

      Young, T. Trans. R. Soc. London 1805, 95, 65.

    40. [40]

      Wenzel, R. N. Ind. Eng. Chem. 1936, 28, 988. doi: 10.1021/ie50320a024  doi: 10.1021/ie50320a024

    41. [41]

      Cassie, A.B.D.; Baxter, S. Trans Faraday Soc. 1944, 40, 546. doi: 10.1039/TF9444000546  doi: 10.1039/TF9444000546

    42. [42]

      Xia, F.; Jiang, L. Adv. Mater. 2008, 20, 2842. doi: 10.1002/adma.200800836  doi: 10.1002/adma.200800836

    43. [43]

      Zhang, Y.; Chen, Y.; Shi, J.; Li, J.; Guo, Z. J. Mater. Chem. 2012, 22, 799. doi: 10.1039/C1JM14327A  doi: 10.1039/C1JM14327A

    44. [44]

      Li, J.; Jing, Z.; Zha, F.; Yang, Y.; Wang, Q.; Lei, Z. ACS Appl. Mater. Interfaces 2014, 6, 8868. doi: 10.1021/am5015937  doi: 10.1021/am5015937

    45. [45]

      Bormashenko, E. Colloids Surf. A 2009, 345, 163. doi: 10.1016/j.colsurfa.2009.04.054  doi: 10.1016/j.colsurfa.2009.04.054

    46. [46]

      Cheng, Z.; Du, M.; Lai, H.; Zhang, N.; Sun, K. Nanoscale 2013, 5, 2776. doi: 10.1039/C3NR34256E  doi: 10.1039/C3NR34256E

    47. [47]

      Yong, J. L.; Yang, Q.; Chen, F.; Zhang, D. S.; Du, G. Q.; Bian, H.; Si, J. H.; Yun, F.; Hou, X. Appl. Surf. Sci. 2014, 288, 579. doi: 10.1016/j.apsusc.2013.10.076  doi: 10.1016/j.apsusc.2013.10.076

    48. [48]

      Wu, D.; Wu, S. Z.; Chen, Q. D.; Zhao, S.; Zhang, H.; Jiao, J.; Piersol, J. A.; Wang, J. N.; Sun, H. B.; Jiang, L. Lab Chip 2011, 11, 3873. doi: 10.1039/C1LC20226J  doi: 10.1039/C1LC20226J

    49. [49]

      Yong, J. L.; Chen, F.; Yang, Q.; Zhang, D. S.; Farooq, U, ; Du, G. Q.; Hou, X. J. Mater. Chem. A 2014, 2, 8790. doi: 10.1039/C4TA01277A  doi: 10.1039/C4TA01277A

    50. [50]

      Zhang, F.; Zhang, W. B.; Shi, Z.; Wang, D.; Jin, J.; Jiang, L. Adv. Mater. 2013, 25, 4192. doi: 10.1002/adma.201301480  doi: 10.1002/adma.201301480

    51. [51]

      Gao, X. F.; Xu, L. P.; Xue, Z. G.; Feng, L.; Peng, J. T.; Wen, Y. Q.; Wang, S. T.; Zhang, X. J. Adv. Mater. 2014, 26, 1771. doi: 10.1002/adma.201304487  doi: 10.1002/adma.201304487

    52. [52]

      Yong, J. L.; Chen, F.; Yang, Q.; Du, G. Q.; Shan, C.; Bian, H.; Farooq, U.; Hou, X. J. Mater. Chem. A 2015, 3, 9379. doi: 10.1039/c5ta01104c  doi: 10.1039/c5ta01104c

    53. [53]

      Yong, J. L.; Chen, F.; Yang, Q.; Farooq, U.; Hou, X. J. Mater. Chem. A 2015, 3, 10703. doi: 10.1039/c5ta01782c  doi: 10.1039/c5ta01782c

    54. [54]

      Ding, C.; Zhu, Y.; Liu, M.; Feng, L.; Wan, M.; Jiang, L. Soft Matter 2012, 8, 9064. doi: 10.1039/c2sm25987g  doi: 10.1039/c2sm25987g

    55. [55]

      Li, X. M.; Reinhoudt, D.; Calama, M. C.Chem. Soc. Rev. 2007, 36, 1350. doi: 10.1039/B602486F  doi: 10.1039/B602486F

    56. [56]

      Yoshimitsu; Z.; Nakajima, A.; Watanabe, T.; Hashimoro, K. Langmuir 2002, 18, 5818. doi: 10.1021/la020088p  doi: 10.1021/la020088p

    57. [57]

      Darmanin, T.; Guittard, F. J. Mater. Chem. A 2014, 2, 16319. doi: 10.1039/C4TA02071E  doi: 10.1039/C4TA02071E

    58. [58]

      Ragesh, P.; Ganesh, V. A.; Nair, S. V.; Nair, A. S. J. Mater. Chem. A 2014, 2, 14773. doi: 10.1039/C4TA02542C  doi: 10.1039/C4TA02542C

    59. [59]

      Zhang, Y.; Chen, Y.; Shi, L.; Li, J.; Guo, Z. J. Mater. Chem. 2012, 22, 779. doi: 10.5194/acp-12-779-2012  doi: 10.5194/acp-12-779-2012

    60. [60]

      Roach, P.; Shirtcliffe, N. J.; Newton, M. I. Soft Matter 2008, 4, 224. doi: 10.1039/B712575P  doi: 10.1039/B712575P

    61. [61]

      Wang, S. T.; Song, Y. L.; Jiang, L. Nanotechnology 2007, 18, 015103.doi: 10.1088/0957-4484/18/1/015103  doi: 10.1088/0957-4484/18/1/015103

    62. [62]

      Wang, C. X.; Yao, T. J.; Wu, J.; Ma, C.; Fan, Z. X.; Wang, Z. Y.; Cheng, Y. R.; Lin, Q.; Yang, B. ACS Appl. Mater. Interfaces 2009, 11, 2613. doi: 10.1021/am900520z  doi: 10.1021/am900520z

    63. [63]

      Crick, C. R.; Gibbins, J. A.; Parkin, I. P. J. Mater. Chem. A 2013, 1, 5943. doi: 10.1039/c3ta10636e  doi: 10.1039/c3ta10636e

    64. [64]

      Kong, L. H.; Chen, X. H.; Yu, L. G.; Wu, Z. S.; Zhang, P. Y. ACS Appl. Mater. Interfaces 2015, 7, 2616.doi: 10.1021/am507620s  doi: 10.1021/am507620s

    65. [65]

      Wang, F. J.; Lei, S.; Xue, M. S.; Ou, J. F.; Li, C. Q.; Li, W. J. Phys. Chem. C 2014, 118, 6344. doi: 10.1021/jp500359vl  doi: 10.1021/jp500359vl

    66. [66]

      Zhu, Q.; Pan, Q. M. ACS Nano 2014, 8, 1402. doi: 10.1021/nn4052277  doi: 10.1021/nn4052277

    67. [67]

      Pan Y X, Shi K, Peng C, Wang W C, Liu Z, Ji X L. ACS Appl. Mater. Interfaces 2014, 6, 8651. doi: 10.1021/am5014634  doi: 10.1021/am5014634

    68. [68]

      Gao, X.; Zhou, J. Y.; Du, R.; Xie, Z. P.; Deng, S. B.; Liu, R.; Liu, Z. F.; Zhang, J. Adv. Mater. 2016, 28, 168. doi: 10.1002/adma.201504407  doi: 10.1002/adma.201504407

    69. [69]

      Du, R.; Gao, X.; Feng, Q. L.; Zhao, Q. C.; Li, P.; Deng, S. B.; Shi, L. R.; Zhang, J. Adv. Mater.2016, 28, 936. doi: 10.1002/adma.201504542  doi: 10.1002/adma.201504542

    70. [70]

      Li, J.; Yan, L.; Tang, X. H.; Feng, H.; Hu, D. C.; Zha, F. Adv. Mater. Interfaces 2016, 3, 1500770. doi: 10.1002/admi.201500770  doi: 10.1002/admi.201500770

    71. [71]

      Ge, J.; Shi, L. A.; Wang, Y. C.; Zhao, H. Y.; Yao, H. B.; Zhu, Y. B.; Zhang, Y.; Zhu, H. W.; Wu, H. A.; Yu, S. H. Nat. Nanotech. 2017, 12, 434. doi: 10.1038/nnano.2017.33  doi: 10.1038/nnano.2017.33

    72. [72]

      Haeshin, L.; Dellatore, S. M.; Miller, W. M.; Messermith, P. B. Science 2007, 318, 426. doi: 10.1126/science.1147241  doi: 10.1126/science.1147241

    73. [73]

      Lee, H.; Scherer, N. F.; Messermith, P. B. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 12999. doi: 10.1073/pnas.0605552103  doi: 10.1073/pnas.0605552103

    74. [74]

      Choi, S. J.; Kwon, T. H.; Im, H.; Moon, D. I.; Baek, D. J.; Seol, M. L.; Duarte, J. P.; Choi, Y. K. ACS Appl. Mater. Interfaces 2011, 3, 4552. doi: 10.1021/am201352w  doi: 10.1021/am201352w

    75. [75]

      Yu, S. Z.; Tan, H. Y.; Wang, J.; Liu, X.; Zhou, K. B. ACS Appl. Mater. Interfaces 2015, 7, 6745.doi: 10.1021/acsami.5b00196  doi: 10.1021/acsami.5b00196

    76. [76]

      Zou, F. X.; Peng, L.; Fu, W. X.; Zhang, J. L.; Li, Z. B. RSC Adv. 2015, 5, 76346. doi: 10.1039/c5ra13023a  doi: 10.1039/c5ra13023a

    77. [77]

      Zhang, X.; Zhua, W. Z.; Parkin, I. P.; RSC Adv. 2017, 7, 31. doi: 10.1039/c6ra25636h  doi: 10.1039/c6ra25636h

    78. [78]

      Li, S. H.; Huang, J. Y.; Chen, Z.; Chen, G. Q.; Lai, Y. K. J. Mater. Chem. A 2017, 5, 31. doi: 10.1039/c6ta07984a  doi: 10.1039/c6ta07984a

    79. [79]

      Lai, Y. K.; Huang, J. Y.; Cui, Z. Q.; Ge, M. Z.; Zhang, K. Q; Chen, Z.; Chi, L. F. small 2016, 12, 2203. doi: 10.1002/smll.201501837  doi: 10.1002/smll.201501837

    80. [80]

      Li, S. H.; Huang, J. Y.; Ge, M. Z.; Cao, C. Y.; Deng, S.; Zhang, S. N.; Cuo, G. Q.; Zhang, K. Q.; Al-Deyab, S. S.; Lai, Y. K. Adv. Mater. Interfaces 2015, 2, 1500220. doi: 10.1002/admi.201500220  doi: 10.1002/admi.201500220

    81. [81]

      Li, Yang.; Wang, J. D.; Fan, L. N.; Chen, D. R. Acta Phys. -Chim. Sin. 2016, 32(4), 990.  doi: 10.3866/PKU.WHXB201601131

    82. [82]

      Cao, C. Y.; Ge, M. Z.; Huang, J. Y.; Li, S. H.; Deng, S.; Zhang, S. N.; Chen, Z.; Zhang, K. Q.; Al-Deyab, S. S.; Lai, Y. K. J. Mater. Chem. A 2016, 4, 12179. doi: 10.1039/c6ta04420d  doi: 10.1039/c6ta04420d

    83. [83]

      Xue, C. H.; Li, Y. R.; Hou, J. L.; Zhang, L.; Ma, J. Z.; Jia, S. T. J. Mater. Chem. A 2015, 3, 10248. doi: 10.1039/c5ta01014d  doi: 10.1039/c5ta01014d

    84. [84]

      Yong, J. L.; Fang, Y.; Chen, F.; Huo, J. L.; Yang, Q.; Bian, H.; Du, G. Q.; Hou, X. Appl. Surf. Sci. 2016, 389, 1148. doi: 10.1016/j.apsusc.2016.07.075  doi: 10.1016/j.apsusc.2016.07.075

    85. [85]

      Arbatan, T.; Fang, X. Y.; Shen, W. Chem. Eng. J. 2011, 166, 787. doi: 10.1016/j.cej.2010.11.015  doi: 10.1016/j.cej.2010.11.015

    86. [86]

      Guix, M.; Orozco, J.; Garcia, M.; Gao, W.; Sattayasamitsathit, S.; Merkoci, A.; Escarpa, A.; Wang, J. ACS Nano 2012, 6, 4445. doi: 10.1021/nn301175b  doi: 10.1021/nn301175b

    87. [87]

      Yong, J. L.; Chen, F.; Yang, Q.; Hou, X. Soft Matter 2015, 11, 8897. doi: 10.1039/ C5SM02153G  doi: 10.1039/C5SM02153G

    88. [88]

      Chen, F.; Zhang, D. S.; Yang, Q.; Yong, J. L.; Du, G. Q.; Si, J. H.; Yun, F.; Hou, X. ACS Appl. Mater. Interfaces 2013, 5, 6777. doi: 10.1021/am401677z  doi: 10.1021/am401677z

    89. [89]

      Jiang, H. B.; Zhang, Y. L.; Han, D. D.; Xia, H.; Feng, J.; Chen, Q. D.; Hong, Z. R.; Sun, H. B. Adv. Funt. Mater. 2014, 24, 4595. doi: 10.1002/adfm.201400296  doi: 10.1002/adfm.201400296

    90. [90]

      Yong, J. L.; Chen, F.; Yang, Q.; Fang, Y.; Huo, J. L.; Zhang, J. Z.; Hou, X. Adv. Mater. Interfaces 2017, 4, 1700552. doi: 10.1002/admi.201700552  doi: 10.1002/admi.201700552

    91. [91]

      Yong, J. L.; Yang, Q.; Chen, F.; Zhang, D. S.; Farooq, U.; Du, G. Q.; Hou, X. J. Mater. Chem. 2014, 2, 5499. doi: 10.1039/c3ta14711h  doi: 10.1039/c3ta14711h

    92. [92]

      Vorobyev, A. Y.; Guo, C. L. Laser Photonics Rev. 2013, 7, 385. doi: 10.1002/lpor.201200017  doi: 10.1002/lpor.201200017

    93. [93]

      Sugioka, K.; Chen, Y. Appl. Phys. Rev. 2014, 1, 041303. doi: 10.1063/1.4904320  doi: 10.1063/1.4904320

    94. [94]

      Kawata, S.; Sun, H. B.; Tanaka, T.; Takada, K. Nature 2001, 412, 697. doi: 10.1038/35089130  doi: 10.1038/35089130

    95. [95]

      Dong, Y.; Li, J.; Shi, L.; Wang, X. B.; Guo, Z. G.; Liu, W. M. Chem. Commun. 2014, 50, 5586. doi: 10.1039/C4CC01408A  doi: 10.1039/C4CC01408A

    96. [96]

      Liu, Y. Q.; Zhang, Y. L.; Fu, X. Y.; Sun, H. B. ACS Appl. Mater. Interfaces 2015, 7, 20930. doi: 10.1021/acsami.5b06326  doi: 10.1021/acsami.5b06326

    97. [97]

      Zhang, L. B.; Zhong, Y. J.; Cha, D. K.; Wang, P. Sci. Rep. 2013, 3, 2326. doi: 10.1038/srep02326  doi: 10.1038/srep02326

    98. [98]

      Li, J.; Li, D. M.; Yang, Y. X.; Li, J. P.; Zha, F.; Lei, Z. Q. Green Chem. 2016, 18, 541. doi: 1039/C5GC01818H  doi: 10.1039/C5GC01818H

    99. [99]

      Chen, Y. E.; Wang, N.; Guo, F. Y.; Hou, L. L.; Liu, J. C.; Liu, J.; Xu, Y.; Zhao. Y.; Jiang, L. J. Mater. Chem. A 2016, 4, 12014. doi: 10.1039/c6ta02579j  doi: 10.1039/c6ta02579j

    100. [100]

      Zhang, F.; Zhang, W. B.; Shi, Z.; Wang, D.; Jin, J.; Jiang, L. Adv. Mater. 2013, 25, 4192. doi: 10.1002/adma.201301480  doi: 10.1002/adma.201301480

    101. [101]

      Zhang, S. Y.; Lu, F.; Tao, L.; Liu, N.; Gao, C. G.; Feng, L.; Wei, Y. ACS Appl. Mater. Interfaces 2013, 5, 11971. doi: 10.1021/am403203q  doi: 10.1021/am403203q

    102. [102]

      Gao, S. J.; Sun, J. C.; Liu, P. P.; Zhang, F.; Zhang, W. B.; Yuan, S. L.; Li, J. Y.; Jin, J. Adv. Mater. 2016, 28, 5307. doi: 10.1002/adma.201600417  doi: 10.1002/adma.201600417

    103. [103]

      Zhang, E. S.; Cheng, Z. J.; Lv, T.; Qian, Y. H.; Liu, Y. Y. J. Mater. Chem. A 2015, 3, 13411. doi: 10.1039/c5ta02053k  doi: 10.1039/c5ta02053k

    104. [104]

      Li, J.; Yan, L.; Li, H. Y.; Li, W. J.; Zha, F.; Lei, Z. Q. J. Mater. Chem. A 2015, 3, 14696. doi: 10.1039/C5TA02870A  doi: 10.1039/C5TA02870A

    105. [105]

      Teng, C.; Lu, X. Y.; Ren, G. G.; Zhu, Y.; Wan, M. X.; Jiang, L. Adv. Mater. Interfaces 2014, 1, 1400099. doi: 10.1002/admi.201400099  doi: 10.1002/admi.201400099

    106. [106]

      Zhou, C. L.; Cheng, J.; Hou, K.; Zhao, A.; Pi, P. H.; Wen, X. F.; Xu, S. P. Chem. Eng. J. 2016, 301, 249. doi: 10.1016/j.cej.2016.05.026  doi: 10.1016/j.cej.2016.05.026

    107. [107]

      Yu, Z. W.; F. Yun, F.; Gong, Z. Y.; Yao, Q.; Dou, S. X.; Liu, K. S.; Jiang, L.; Wang, X. L. J. Mater. Chem. A 2017, 5, 10821. doi: 10.1039/c7ta01987d  doi: 10.1039/c7ta01987d

    108. [108]

      Tao, M. M.; Xue, L. X.; Liu, F.; Jiang, L. Adv. Mater. 2014, 26, 2943. doi: 10.1002/adma.201305112  doi: 10.1002/adma.201305112

    109. [109]

      Chen, P. C.; Xu, Z. K. Sci. Rep. 2013, 3, 2776. doi: 10.1038/srep02776  doi: 10.1038/srep02776

    110. [110]

      Yong, J. L.; Chen, F.; Yang, Q.; Bian. H.; Du, G. Q.; Shan, C.; Huo, J. L.; Fang, Y.; Hou, X. Adv. Mater. Interfaces 2016, 3, 1500650. doi: 10.1002/admi.201500650  doi: 10.1002/admi.201500650

    111. [111]

      Kota, A. K.; Kwon, G.; Choi, W.; Mabry, J. M.; Tuteja, A. Nat. Commun. 2012, 3, 1025. doi: 10.1038/ncomms2027  doi: 10.1038/ncomms2027

    112. [112]

      Pan, S. J.; Guo, R.; Xu, W. J. AIChE J. 2014, 60, 2752. doi: 10.1002/aic.14517  doi: 10.1002/aic.14517

    113. [113]

      Brown P S, Bhushan B. Sci. Rep. 2015, 5, 870. doi: 10.1038/srep14030  doi: 10.1038/srep14030

    114. [114]

      Chu, Z.; Seeger, S. Chem. Soc. Rev. 2014, 43, 2784. doi: 10.1039/c3cs60415b  doi: 10.1039/c3cs60415b

    115. [115]

      Kota, A. K.; Kwon, G.; Tuteja, A. NPG Asia Mater. 2014, 6, e109. doi: 10.1038/am.2014.34  doi: 10.1038/am.2014.34

    116. [116]

      Zhang, L. B.; Zhang, Z. H.; Wang, P. NPG Asia Mater. 2012, 4, e8. doi: 10.1038/am.2012.14  doi: 10.1038/am.2012.14

    117. [117]

      Ju, G.; Cheng, M.; Shi, Y. NPG Asia Mater. 2014, 6, e111. doi: 10.1038/am.2014.44  doi: 10.1038/am.2014.44

    118. [118]

      Cheng, Z. J.; Lai, H.; Du, Y.; Fu, K. W.; Hou, R.; Li, C.; Zhang, N. Q.; Sun, K. N. ACS Appl. Mater. Interfaces 2014, 6, 636. doi: 10.1021/am4047393  doi: 10.1021/am4047393

    119. [119]

      Chen, Q. F.; Li, M. Z.; Yang, F.; Liu, M. J.; Li, L.; Wang, S. T.; Jiang, L. Soft Matter 2012, 8, 6740. doi: 10.1039/c2sm25421b  doi: 10.1039/c2sm25421b

    120. [120]

      Li, M. C.; Wang, B.; Heng, L. P.; Jiang, L. Adv. Mater. Interfaces 2014, 1, 1400298. doi: 10.1002/admi.201400298  doi: 10.1002/admi.201400298

    121. [121]

      Kwon, G.; Kota, A. K.; Li, Y. X.; Sohani, A.; Mabry, J. M.; Tuteja, A. Adv. Mater. 2012, 24, 3666. doi: 10.1002/adma.201201364  doi: 10.1002/adma.201201364

    122. [122]

      Xin, B. W.; Hao, J. C. Chem. Soc. Rev. 2010, 39, 769. doi: 10.1039/b913622c  doi: 10.1039/b913622c

    123. [123]

      Lim H S, Han J T, Kwak D, Jin M, Cho K. J. Am. Chem. Soc. 2006, 128, 14458. doi: 10.1021/ja0655901  doi: 10.1021/ja0655901

    124. [124]

      Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Nature 1997, 388, 431. doi: 10.1038/41233  doi: 10.1038/41233

    125. [125]

      Sawai, Y.; Nishimoto, S.; Kameshima, Y.; Fujii, E.; Miyake, M. Langmuir 2013, 29, 6784. doi: 10.1021/la401382g  doi: 10.1021/la401382g

    126. [126]

      Feng, X.J.; Feng, L.; Jin, M. H.; Zhai, J.; Jiang, L.; Zhu, D. B. J. Am. Chem. Soc. 2004, 126, 62. doi: 10.1021/ja038636o  doi: 10.1021/ja038636o

    127. [127]

      Tian, D. L.; Zhang, X. F.; Tian, Y.; Wu, Y.; Wang, X.; Zhai, J.; Jiang, L. J. Mater. Chem. 2012, 22, 19652. doi: 10.1039/c2jm34056a  doi: 10.1039/c2jm34056a

    128. [128]

      Xue, B. L.; Gao, L. C.; Hou, Y. P.; Liu, Z. W.; Jiang, L. Adv. Mater. 2013, 25, 273. doi: 10.1002/adma.201202799  doi: 10.1002/adma.201202799

  • 加载中
    1. [1]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    2. [2]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    3. [3]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    4. [4]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    7. [7]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    8. [8]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    9. [9]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    10. [10]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    13. [13]

      Jing Du Xi Yu Xiaofei Ma Wentao Zhao . Artificial Intelligence & Chemistry Course Construction. University Chemistry, 2024, 39(11): 65-71. doi: 10.12461/PKU.DXHX202403072

    14. [14]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    15. [15]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    16. [16]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    17. [17]

      Tongqi Ye Qi Wang Yuewen Ye Yanqing Wang Hongyang Zhou Xianghua Kong . Reflection on the Reform of Physical Chemistry Teaching under the Background of “Intelligent Chemical Engineering”. University Chemistry, 2024, 39(3): 167-173. doi: 10.3866/PKU.DXHX202308116

    18. [18]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014

    19. [19]

      Ping Li Chao Yin . Teaching Exploration and Practical Innovation of General Education Courses in the Context of Artificial Intelligence. University Chemistry, 2024, 39(10): 402-407. doi: 10.12461/PKU.DXHX202403075

    20. [20]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

Metrics
  • PDF Downloads(8)
  • Abstract views(421)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return