Citation: ZHOU Yongquan, SOGA Yoshie, YAMAGUCHI Toshio, FANG Yan, FANG Chunhui. Structure of Aqueous RbCl and CsCl Solutions Using X-Ray Scattering and Empirical Potential Structure Refinement Modelling[J]. Acta Physico-Chimica Sinica, ;2018, 34(5): 483-491. doi: 10.3866/PKU.WHXB201709111 shu

Structure of Aqueous RbCl and CsCl Solutions Using X-Ray Scattering and Empirical Potential Structure Refinement Modelling

  • Corresponding author: FANG Chunhui, fangch@isl.ac.cn
  • Received Date: 7 August 2017
    Revised Date: 3 September 2017
    Accepted Date: 11 September 2017
    Available Online: 11 May 2017

    Fund Project: The project was supported by the Natural Science Foundation of Qinghai Province, China (2015-ZJ-945Q) and Youth Innovation Promotion Association, CAS, China (2017467)the Natural Science Foundation of Qinghai Province, China 2015-ZJ-945QYouth Innovation Promotion Association, CAS, China 2017467

  • X-ray scattering measurements were performed on 1.0 mol·dm-3 RbCl and CsCl aqueous solutions. The X-ray structure factors were subjected to empirical potential structure refinement to extract detailed structural information on hydrated Cl-, Rb+, Cs+, and ion association, as well as bulk water, in terms of the individual site-site pair correlation functions, coordination number distributions, and spatial density functions (three-dimensional structure). Cl- is found to have a relatively stable six-fold coordination of water molecules with a Cl--H2O distance of 0.321 nm, and without a significant cation effect on its local structure. Rb+ is surrounded on an average by 7.3 ± 1.4 water molecules with a Rb+-H2O distance of 0.297 nm, whereas 8.4 ± 1.6 water molecules hydrate Cs+ at a Cs+-H2O distance of 0.312 nm. It is likely that Rb+ has a stronger hydration shell than Cs+, as evidenced by the presence of the second hydration shell of the former. Contact ion-pairs are partially formed in both solutions and characterized by the Rb+-Cl- and Cs+-Cl- distances of 0.324 nm and 0.336 nm. The solvent-separated ion pairs for both ions are discernible at around 0.6 nm. Rb+ has a stronger electrostatic interaction and hence a relatively stronger ion association with Cl- than Cs+.
  • 加载中
    1. [1]

      Xu, C.; Wang, J. C.; Chen, J. Solvent Extr. Ion Exc. 2012, 30, 623. doi: 10.1080/07366299.2012.700579  doi: 10.1080/07366299.2012.700579

    2. [2]

      Lei, H.; Li, S.; Zhai, Q.; Zhang, H.; Jiang, Y.; Hu, M. Acta Phys. -Chim. Sin. 2012, 28, 1599.  doi: 10.3866/PKU.WHXB201204281

    3. [3]

      Zhang, H.; Wang, S.; Wang, R.; Lin, C.; Zhang, X.; Wang, X. Acta Phys. -Chim. Sin. 2000, 16, 952.  doi: 10.3866/PKU.WHXB20001016

    4. [4]

      Izatt, R. M.; Rytting, J. H.; Nelson, D. P.; Haymore, B. L. Science 1969, 164, 443. doi: 10.1126/science.164.3878.443  doi: 10.1126/science.164.3878.443

    5. [5]

      Maleknia, S.; Brodbelt, J. J. Am. Chem. Soc. 1993, 115, 2837. doi: 10.1021/ja00060a034  doi: 10.1021/ja00060a034

    6. [6]

      Glendening, E. D.; Feller, D.; Thompson, M. A. J. Am. Chem. Soc. 1994, 116, 10657. doi: 10.1021/ja00102a035  doi: 10.1021/ja00102a035

    7. [7]

      Inokuchi, Y.; Ebata, T.; Rizzo, T. R.; Boyarkin, O. V. J. Am. Chem. Soc. 2014, 136, 1815. doi: 10.1021/ja4086066  doi: 10.1021/ja4086066

    8. [8]

      Rodriguez, J. D.; Vaden, T. D.; Lisy, J. M. J. Am. Chem. Soc. 2009, 131, 17277. doi: 10.1021/ja906185t  doi: 10.1021/ja906185t

    9. [9]

      Inokuchi, Y.; Boyarkin, O. V.; Kusaka, R.; Haino, T.; Ebata, T.; Rizzo, T. R. J. Phys. Chem. A 2012, 116, 4057. doi: 10.1021/jp3011519  doi: 10.1021/jp3011519

    10. [10]

      Richens D. T.. The Chemistry of Aqua Ions: Synthesis, Structure and Reactivity: A Tour Through the Periodic Table of the Elements[J]. Wiley: Chichester, UK, 1997:pp. 24-68.

    11. [11]

      Fawcett W. R.. Liquids, Solutions, and Interfaces from Classical Macroscopic Descriptions to Modern Microscopic Details[J]. Oxford Univesity Press: New York, USA, 2004:pp. 204-254.

    12. [12]

      Hao, L.; Zhao, Y.; Zhao, J.; Jiang, X.; Yang, Z.; Zhao, D. Acta Phys. -Chim. Sin. 2016, 32, 2921.  doi: 10.3866/PKU.WHXB201609193

    13. [13]

      Galib, M.; Baer, M. D.; Skinner, L. B.; Mundy, C. J.; Huthwelker, T.; Schenter, G. K.; Benmore, C. J.; Govind, N.; Fulton, J. L. J. Chem. Phys. 2017, 146, 084504. doi: 10.1063/1.4975608  doi: 10.1063/1.4975608

    14. [14]

      Ohtaki, H.; Radnai, T. Chem. Rev. 1993, 93, 1157. doi: 10.1021/cr00019a014  doi: 10.1021/cr00019a014

    15. [15]

      Cummings, S.; Enderby, J. E.; Neilson, G. W.; Newsome, J. R.; Howe, R. A.; Howells, W. S.; Soper, A. K. Nature 1980, 287, 714. doi: 10.1038/287714a0  doi: 10.1038/287714a0

    16. [16]

      Smirnov, P. R.; Trostin, V. N. Russ. J. Gen. Chem. 2007, 77, 2101. doi: 10.1134/S1070363207120043  doi: 10.1134/S1070363207120043

    17. [17]

      Du, H.; Rasaiah, J. C.; Miller, J. D. J. Phys. Chem. B 2007, 111, 209. doi: 10.1021/jp064659o  doi: 10.1021/jp064659o

    18. [18]

      Mile, V.; Gereben, O.; Kohara, S.; Pusztai, L. J. Phys. Chem. B 2012, 116, 9758. doi: 10.1021/jp301595m  doi: 10.1021/jp301595m

    19. [19]

      Ramos, S.; Barnes, A. C.; Neilson, G. W.; Capitan, M. J. Chem. Phys. 2000, 258, 171. doi: 10.1016/S0301-0104(00)00132-4  doi: 10.1016/S0301-0104(00)00132-4

    20. [20]

      Ildikó, H.; László, P. J. Phys.: Condens. Matter 2007, 19, 335208. doi: 10.1088/0953-8984/19/33/335208  doi: 10.1088/0953-8984/19/33/335208

    21. [21]

      Mile, V.; Pusztai, L.; Dominguez, H.; Pizio, O. J. Phys. Chem. B 2009, 113, 10760. doi:10.1021/jp900092g  doi: 10.1021/jp900092g

    22. [22]

      Buda, A.; Ali, S. M. J. Mol. Liq. 2013, 179, 34. doi: doi/abs/10.1021/ic030310t  doi: 10.1021/ic030310t

    23. [23]

      Ikeda, T.; Boero, M. J. Chem. Phys. 2012, 137, 041101. doi: 10.1063/1.4742151  doi: 10.1063/1.4742151

    24. [24]

      M hler, J.; Persson, I. Inorg. Chem. 2011, 51, 425. doi: 10.1021/ic2018693  doi: 10.1021/ic2018693

    25. [25]

      Ling, L.; Fang, C.; Fang, Y. Salt Lake Res. 2006, 15, 45.
       

    26. [26]

      Ansell, S.; Barnes, A. C.; Mason, P. E.; Neilson, G. W.; Ramos, S. Biophys. Chem. 2006, 124, 171. doi: 10.1016/j.bpc.2006.04.018  doi: 10.1016/j.bpc.2006.04.018

    27. [27]

      Neilson, G. W.; Mason, P. E.; Ramos, S.; Sullivan, D. Philos. Trans. R. Soc. London, Ser. A 2001, 359, 1575. doi: 10.1098/rsta.2001.0866  doi: 10.1098/rsta.2001.0866

    28. [28]

      Zhou, Y.; Fang, C.; Fang Y.; Zhu, F.; Tao, S.; Xu, S. Russ. J. Phys. Chem. A 2012, 86, 1236. doi: 10.1134/S0036024412060349  doi: 10.1134/S0036024412060349

    29. [29]

      Thorpe S. J. L., Thorpe M. F.. Local Structure from Diffraction[J]. Kluwer Academic Publishers: New York, USA, 2002:pp. 59-85.

    30. [30]

      Soper, A. K. Chem. Phys. 1996, 202, 295. doi: 10.1016/0301-0104(95)00357-6  doi: 10.1016/0301-0104(95)00357-6

    31. [31]

      Soper, A. K. Phys. Rev. B 2005, 72, 104204. doi: 10.1103/PhysRevB.72.104204  doi: 10.1103/PhysRevB.72.104204

    32. [32]

      Soper, A. K. Mol. Simul. 2012, 38, 1171. doi: 10.1080/08927022.2012.732222  doi: 10.1080/08927022.2012.732222

    33. [33]

      Yamaguchi, T.; Fujimura, K.; Uchi, K.; Yoshida, K.; Katayama, Y. J. Mol. Liq. 2012, 176, 44. doi: 10.1016/j.molliq.2012.08.021.  doi: 10.1016/j.molliq.2012.08.021

    34. [34]

      Shalaev, E.; Soper, A. K. J. Phys. Chem. B 2016, 120, 7289. doi: 10.1021/acs.jpcb.6b06157  doi: 10.1021/acs.jpcb.6b06157

    35. [35]

      Mancinelli, R.; Botti, A.; Bruni, F.; Ricci, M. A.; Soper, A. K. J. Phys. Chem. B 2007, 111, 13570. doi: 10.1021/jp075913v  doi: 10.1021/jp075913v

    36. [36]

      Bowron, D. T.; Moreno, S. D. Coord. Chem. Rev. 2014, 277, 2. doi: 10.1021/jp202961t  doi: 10.1021/jp202961t

    37. [37]

      Krogh-Moe, J. Acta Crystallogr. 1956, 9, 951. doi: 10.1107/S0365110X56002655  doi: 10.1107/S0365110X56002655

    38. [38]

      Norman, N. Acta Crystallogr. 1957, 10, 370. doi: 10.1107/S0365110X57001085  doi: 10.1107/S0365110X57001085

    39. [39]

      Prince E.. International Tables for Crystallography[J]. Kluwer Academic Publishers: London, UK, 2004pp. 230-235, 255, 555-556, 658.

    40. [40]

      Hubbell, J. H.; Veigele, W. J.; Briggs, E. A.; Brown, R. T.; Cromer, D. T.; Howerton, R. J. J. Phys. Chem. Ref. Data 1975, 4(3), 471. doi: 10.1063/1.555523  doi: 10.1063/1.555523

    41. [41]

      Kaplow, R.; Strong, S. L.; Averbach, B. L. Phys. Rev. 1965, 138, A1336. doi: 10.1103/PhysRev.138.A1336  doi: 10.1103/PhysRev.138.A1336

    42. [42]

      Johansson, G.; Sandstrm M. Chemica Scripta 1973, 4, 195. doi: 10.1107/S0021889875009594  doi: 10.1107/S0021889875009594

    43. [43]

      Zhou, Y.; Fang, C.; Fang, Y. Acta Phys. -Chim. Sin. 2010, 26, 2323.  doi: 10.3866/PKU.WHXB20100903

    44. [44]

      Yamaguchi, T.; Lee, K.; Yamauchi, M.; Fukuyama, N.; Yoshida, K. Bunseki Kagaku 2015, 64, 295. doi: 10.2116/bunsekikagaku.64.295  doi: 10.2116/bunsekikagaku.64.295

    45. [45]

      Jensen, K. P.; Jorgensen, W. L. J. Chem. Theory Comput. 2006, 2, 1499. doi: 10.1021/ct600252r  doi: 10.1021/ct600252r

    46. [46]

      D'Angelo, P.; Persson, I. Inorg. Chem. 2004, 43, 3543. doi: 10.1021/ic030310t  doi: 10.1021/ic030310t

    47. [47]

      Smirnov, P. R.; Grechin, O. V. Russ. J. Coord. Chem. 2013, 39, 685. doi: 10.1134/S1070328413090078  doi: 10.1134/S1070328413090078

    48. [48]

      Soper, A. K. Chem. Phys. 2000, 258, 121. doi: 10.1016/S0301-0104(00)00179-8  doi: 10.1016/S0301-0104(00)00179-8

    49. [49]

      Soper, A. K. J. Chem. Phys. 1994, 101, 6888. doi: 10.1063/1.468318  doi: 10.1063/1.468318

    50. [50]

      Marcus, Y. Chem. Rev. 2009, 109, 1346. doi: 10.1021/cr8003828.  doi: 10.1021/cr8003828

    51. [51]

      Chen, T.; Hefter, G.; Buchner, R. J. Phys. Chem. A 2003, 107, 4025. doi: 10.1021/jp026429p  doi: 10.1021/jp026429p

  • 加载中
    1. [1]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    2. [2]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    3. [3]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    4. [4]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    5. [5]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    6. [6]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    7. [7]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    8. [8]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    9. [9]

      Xiaobo LiQunyan WuCongzhi WangJianhui LanMeng ZhangWeiqun Shi . Theoretical perspectives on the reduction of Pu(Ⅳ) and Np(Ⅵ) by methylhydrazine in HNO3 solution: Implications for Np/Pu separation. Chinese Chemical Letters, 2024, 35(7): 109359-. doi: 10.1016/j.cclet.2023.109359

    10. [10]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    11. [11]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    12. [12]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    13. [13]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    14. [14]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    15. [15]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    16. [16]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    17. [17]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    18. [18]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    19. [19]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    20. [20]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

Metrics
  • PDF Downloads(16)
  • Abstract views(457)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return