Citation: XU Jiale, HU Lei, WANG Lu, DENG Jinxia, CHEN Jun, XING Xianran. Controllable Thermal Expansion and Crystal Structure of (Fe1-xNix)ZrF6 Solid Solutions[J]. Acta Physico-Chimica Sinica, ;2018, 34(4): 339-343. doi: 10.3866/PKU.WHXB201709081 shu

Controllable Thermal Expansion and Crystal Structure of (Fe1-xNix)ZrF6 Solid Solutions

  • Corresponding author: CHEN Jun, Junchen@ustb.edu.cn
  • Received Date: 9 August 2017
    Revised Date: 6 September 2017
    Accepted Date: 7 September 2017
    Available Online: 8 April 2017

    Fund Project: the National Natural Science Foundation of China 21231001the Fundamental Research Funds for the Central Universities, China FRF-TP-14-012C1the National Natural Science Foundation of China 91422301The project was supported by the National Natural Science Foundation of China (91422301, 21231001) and the Fundamental Research Funds for the Central Universities, China (FRF-TP-14-012C1)

  • Most materials expand on heating and contract on cooling. In the recent years, however, some compounds have been found to exhibit abnormal negative thermal expansion (NTE) behavior; this presents an opportunity to adjust the coefficient of thermal expansion (CTE) of such materials. It is especially important to obtain controllable thermal expansion in isotropic compounds. Herein, we report the preparation, crystal structure, and controllable thermal expansion in double ReO3-type (Fe1-xNix)ZrF6 solid solutions. (Fe1-xNix)ZrF6 exhibits full range solubility. A controllable thermal expansion of (Fe1-xNix)ZrF6 could be achieved by the chemical substitution of Ni2+ for Fe2+ over a wide range of CTE from −3.24 × 10−6 to +18.23 × 10−6 K−1 (300–675 K). In particular, zero thermal expansion was obtained for the composition (Fe0.5Ni0.5)ZrF6. As a kind of typical framework structure, the transverse thermal vibrations of fluorine atoms are expected to play a critical role in the thermal expansion behavior of double-ReO3 compounds. This study presents a potential method to tune the thermal expansion of NTE (negative thermal expansion) families which have an open framework structure.
  • 加载中
    1. [1]

      Mary, T. A.; Evans, J. S. O.; Vogt, T.; Sleightet, A. W. Science 1996, 272 (5258), 90. doi: 10.1126/science.272.5258.90  doi: 10.1126/science.272.5258.90

    2. [2]

      Greve, B. K.; Martin, K. L.; Lee, P. L.; Chupas, P. J.; Chapman, K. W.; Wilkinson, A. P. J. Am. Chem. Soc. 2010, 132 (44), 15496. doi: 10.1021/ja106711v  doi: 10.1021/ja106711v

    3. [3]

      Lock, N.; Wu, Y.; Christensen, M.; Cameron, L. J.; Peterson, V. K.; Bridgeman, A. J.; Kepert, C. J.; Iversen, B. B. J. Phys. Chem. C 2010, 114 (39), 16181. doi: 10.1021/jp103212z  doi: 10.1021/jp103212z

    4. [4]

      Mohn, P. Nature 1999, 400 (6739), 18. doi: 10.1038/21778  doi: 10.1038/21778

    5. [5]

      Takenaka, K.; Takagi, H. Appl. Phys. Lett. 2005, 87 (26), 261902. doi: 10.1063/1.2147726  doi: 10.1063/1.2147726

    6. [6]

      Deng, S.; Sun, Y.; Wu, H.; Huang, Q.; Yan, J.; Shi, K.; Malik, M. I.; Lu, H.; Wang, L.; Huang, R.; Li, L.; Wang, C. Chem. Mater. 2015, 27 (7), 2495. doi: 10.1021/cm504702m  doi: 10.1021/cm504702m

    7. [7]

      Chen, J.; Nittala, K.; Forrester, J. S.; Jones, J. L.; Deng, J.; Yu, R.; Xing, X. J. Am. Chem. Soc. 2011, 133 (29), 11114. doi: 10.1021/ja2046292  doi: 10.1021/ja2046292

    8. [8]

      Azuma, M.; Chen, W. T.; Seki, H.; Czapski, M.; Olga, S.; Oka, K.; Mizumaki, M.; Watanuki, T.; Ishimatsu, N.; Kawamura, N.; Ishiwata, S.; Tucker, M. G.; Shimakawa, Y.; Attfield, J. P. Nat. Commun. 2011, 2, 347. doi: 10.1038/ncomms1361  doi: 10.1038/ncomms1361

    9. [9]

      Hu, L.; Chen, J.; Sanson, A.; Wu, H.; Rodriguez, C. G.; Olivi, L.; Ren, Y.; Fan, L.; Deng, J.; Xing, X. J. Am. Chem. Soc. 2016, 138 (27), 8320. doi: 10.1021/jacs.6b02370  doi: 10.1021/jacs.6b02370

    10. [10]

      Dejneka, M. J.; Chapman, C. L.; Misture, S. T. J. Am. Ceram. Soc. 2011, 94 (8), 2249. doi: 10.1111/j.1551-2916.2011.04730.x  doi: 10.1111/j.1551-2916.2011.04730.x

    11. [11]

      Uchino, K.; Nomura, S.; Cross, L. E.; Newnham, R. E.; Jang, S. J. J. Mater. Sci. 1981, 16 (3), 569. doi: 10.1007/BF02402772  doi: 10.1007/BF02402772

    12. [12]

      Atkinson, A.; Barnett, S.; Gorte, R. J.; Irvine, J. T. S.; McEvoy, A. J.; Mogensen, M.; Singhal, S. C.; Vohs, J. Nat. Mater. 2004, 3 (1), 17. doi: 10.1038/nmat1040  doi: 10.1038/nmat1040

    13. [13]

      Chen, J.; Hu, L.; Deng, J.; Xing, X. Chem. Soc. Rev. 2015, 44 (11), 3522. doi: 10.1039/C4CS00461B  doi: 10.1039/C4CS00461B

    14. [14]

      Adam, J. L. Chem. Rev. 2002, 102 (6), 2461. doi: 10.1021/cr010305b  doi: 10.1021/cr010305b

    15. [15]

      Greve, B. K.; Martin, K. L.; Lee, P. L.; Chupas, P. J.; Chapman, K. W.; Wilkinson, A. P. J. Am. Chem. Soc.2010, 132 (44), 15496. doi: 10.1021/ja106711v  doi: 10.1021/ja106711v

    16. [16]

      Hu, L.; Chen, J.; Fan, L.; Ren, Y.; Rong, Y.; Pan, Z.; Deng, J.; Yu, R.; Xing, X. J. Am. Chem. Soc. 2014, 136 (39), 13566. doi: 10.1021/ja5077487  doi: 10.1021/ja5077487

    17. [17]

      Hu, L.; Chen, J.; Fan, L.; Ren, Y.; Huang, Q.; Sanson, A.; Jiang, Z.; Zhou, M.; Rong, Y.; Wang, Y.; Deng, J.; Xing, X. Adv. Mater. 2015, 27 (31), 4592. doi: 10.1002/adma.201500868  doi: 10.1002/adma.201500868

    18. [18]

      Hancock, J. C.; Chapman, K. W.; Halder, G. J.; Morelock, C. R.; Kaplan, B. S.; Gallington, L. C.; Bongiorno, A.; Han, C.; Zhou, S.; Wilkinson, A. P. Chem. Mater. 2015, 27 (11), 3912. doi: 10.1021/acs.chemmater.5b00662  doi: 10.1021/acs.chemmater.5b00662

    19. [19]

      Hu, L.; Chen, J.; Xu, J.; Wang, N.; Han, F.; Ren, Y.; Pan, Z.; Rong, Y.; Huang, R.; Deng, J.; Li, L.; Xing, X. J. Am. Chem. Soc. 2016, 138 (44), 14530. doi: 10.1021/jacs.6b08746  doi: 10.1021/jacs.6b08746

    20. [20]

      Sleight, A. Nature 2003, 425 (6959), 674. doi: 10.1038/425674a  doi: 10.1038/425674a

    21. [21]

      Margadonna, S.; Prassides, K.; Fitch, A. N. J. Am. Chem. Soc. 2004, 126 (47), 15390. doi: 10.1021/ja044959o  doi: 10.1021/ja044959o

    22. [22]

      Song, X.; Sun, Z.; Huang, Q.; Rettenmayr, M.; Liu, X.; Seyring, M.; Li, G.; Rao, G.; Yin, F. Adv. Mater.2011, 23 (40), 4690. doi: 10.1002/adma.201102552  doi: 10.1002/adma.201102552

    23. [23]

      Phillips, A. E.; Halder, G. J.; Chapman, K. W.; Goodwin, A. L.; Kepert, C. J. J. Am. Chem. Soc. 2009, 132 (1), 10. doi: 10.1021/ja906895  doi: 10.1021/ja906895

  • 加载中
    1. [1]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    2. [2]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    6. [6]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    7. [7]

      Zhiliang Li . An Overview of Research on the History of Catalysis Science in China. University Chemistry, 2024, 39(7): 398-404. doi: 10.3866/PKU.DXHX202310101

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    11. [11]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    12. [12]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    13. [13]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    14. [14]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    15. [15]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    16. [16]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    17. [17]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    18. [18]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    19. [19]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(7)
  • Abstract views(300)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return