Citation: BAI Huarong, FAN Huanhuan, ZHANG Xiaobing, CHEN Zhuo, TAN Weihong. Aptamer-Conjugated Nanomaterials for Specific Cancer Diagnosis and Targeted Therapy[J]. Acta Physico-Chimica Sinica, ;2018, 34(4): 348-360. doi: 10.3866/PKU.WHXB201708311 shu

Aptamer-Conjugated Nanomaterials for Specific Cancer Diagnosis and Targeted Therapy

  • Corresponding author: TAN Weihong, tan@chem.ufl.edu
  • Received Date: 10 July 2017
    Revised Date: 24 August 2017
    Accepted Date: 25 August 2017
    Available Online: 1 May 2017

    Fund Project: the National Natural Science Foundation of China 21221003the National Natural Science Foundation of China 21327009The project was supported by the National Natural Science Foundation of China (21221003, 21327009)

  • Owing to their unique optical, electronic, magnetic, and surface plasmon resonance properties, nanomaterials have attracted significant attention for potential bioanalysis and biomedical applications. Aptamers are single-stranded oligonucleotides, which are generated by a procedure termed as SELEX (Systematic Evolution of Ligands by EXponential Enrichment) and typically demonstrate high affinity and selectivity toward their target molecules. As a result of their unique characteristics, aptamers are promising recognition units that can be conjugated with nanomaterials for cancer cell imaging, diagnosis, and cancer therapy. By integrating the recognition abilities of aptamers with the properties of nanomaterials, aptamer-conjugated nanomaterials can serve as extraordinary tools for bioimaging and cancer therapy. Recently, aptamer-conjugated nanomaterials have attracted significant attention in the field of specific cancer cell targeted therapy owing to their improved efficacy and lower toxicity. In this review, we summarize the progress achieved of aptamer-conjugated nanomaterials as nanocarriers for specific cancer cell diagnosis and targeted therapy. In addition to drug delivery for cancer therapy, the various achievements of the aptamer-conjugated nanomaterials in combination with other emerging technologies to improve the efficiency and selectivity of cancer therapy have also been reviewed.
  • 加载中
    1. [1]

      Mukerjee, A.; Ranjan, A. P.; Vishwanatha, J. K. Curr. Med. Chem. 2012, 19, 3714.doi:10.2174/092986712801661176  doi: 10.2174/092986712801661176

    2. [2]

      Barbas, A. S.; Mi, J.; Clary, B. M.; White, R. R. FutureOncol. 2010, 6, 1117.doi:10.2217/fon.10.67  doi: 10.2217/fon.10.67

    3. [3]

      Li, J.; Li, D. X.; Yuan, R.; Xiang, Y. ACS Appl. Mater. Interfaces 2017, 9, 5717.doi:10.1021/acsami.6b13073  doi: 10.1021/acsami.6b13073

    4. [4]

      Lu, Q.; Ericson, D.; Song, Y.; Zhu, C. Z.; Ye, R. F.; Liu, S. Q.; Spernyak, J. A.; Du, D.; Li, H.; Wu, Y.; Lin, Y.H. ACS Appl. Mater. Interfaces 2017, 9, 23325.doi:10.1021/acsami.6b15387  doi: 10.1021/acsami.6b15387

    5. [5]

      Wei, R. Y.; Wei, Z. W.; Sun, L. N.; Zhang, J. Z.; Liu, J. L.; Ge, X. Q.; Shi, L. Y. ACS Appl. Mater. Interfaces 2016, 8, 400. doi:10.1027/acsami.5b09132  doi: 10.1027/acsami.5b09132

    6. [6]

      Venkateswarlu, S.; Lee, D.; Yoon, M. ACS Appl. Mater. Interfaces 2016, 8, 23876.doi:10.1021/acsami.6b03583  doi: 10.1021/acsami.6b03583

    7. [7]

      Wang, P. F.; Wu, S. Y.; Tian, C.; Yu, G. M.; Jiang, W.; Wang, G. S.; Mao, C. D. J. Am. Chem. Soc. 2016, 138, 13579. doi:10.1021/jacs.6b06074  doi: 10.1021/jacs.6b06074

    8. [8]

      Zhou, W. J.; Li, D. X.; Xiong, C. Y.; Yuan, R.; Xiang, Y. ACS Appl. Mater. Interfaces 2016, 8, 13303.doi:10.1021/acsami.6b03165  doi: 10.1021/acsami.6b03165

    9. [9]

      Tian, C.; Kim, H.; Sun, W.; Kim, Y.; Yin, P.; Liu, H. T. ACS Nano 2017, 11, 227.doi:10.1021/acsnano.6b04777  doi: 10.1021/acsnano.6b04777

    10. [10]

      Bamrungsap, S.; Zhao, Z.; Chen, T.; Wang, L.; Li, C.; Fu, T.; Tan, W. Nanomedicine 2012, 7, 1253. doi:10.2217/nnm.12.87  doi: 10.2217/nnm.12.87

    11. [11]

      Gu, F. X.; Karnik, R.; Wang, A. Z.; Alexis, F.; Levynissenbaum, E.; Hong, S.; Langer, R.; Farokhzad, O. C. NanoToday 2007, 2, 14.doi:10.5772/51382  doi: 10.5772/51382

    12. [12]

      Tian, J. W.; Ding, L.; Ju, H. X.; Yang, Y. C.; Li, X. L.; Shen, Z.; Zhu, Z.; Yu, J. S.; Yang, C. J. Angew. Chem.-Int. Edit.2014, 53, 9544.doi:10.1002/anie.201405490  doi: 10.1002/anie.201405490

    13. [13]

      Ni, X.; Castanares, M.; Mukherjee, A.; Lupold, S. E. Curr. Med. Chem. 2011, 18, 4206. doi:10.2174/092986711797189600  doi: 10.2174/092986711797189600

    14. [14]

      Chang, Y. M.; Donovan, M. J.; Tan, W. J. Nucleic Acids2013, 2013, 817350.doi:10.1155/2013/817350  doi: 10.1155/2013/817350

    15. [15]

      Ellington, A. D.; Szostak, J. W. Nature 1990, 346, 818. doi:10.1038/346818a0  doi: 10.1038/346818a0

    16. [16]

      Huizenga, D. E.; Szostak, J. W. Biochemistry 1995, 34, 656.doi: 10.1021/bi00002a033  doi: 10.1021/bi00002a033

    17. [17]

      Duan, M.; Long, Y.; Yang, C.; Wu, X.; Sun, Y.; Li, J.; Hu, X.; Lin, W.; Han, D.; Zhao, Y. Oncotarget2016, 7, 36436. doi:10.18632/oncotarget.9262  doi: 10.18632/oncotarget.9262

    18. [18]

      Long, Y.; Qin, Z.; Duan, M.; Li, S.; Wu, X.; Lin, W.; Li, J.; Zhao, Z.; Liu, J.; Xiong, D. Sci. Rep. 2016, 6, 24986. doi:10.1038/srep24986  doi: 10.1038/srep24986

    19. [19]

      Wu, X.; Zhao, Z.; Bai, H.; Fu, T.; Yang, C.; Hu, X.; Liu, Q.; Champanhac, C.; Teng, I.; Ye, M. Theranostics2015, 5, 985.doi:10.7150/thno.11938  doi: 10.7150/thno.11938

    20. [20]

      Hermann, T.; Patel, D. J. Science 2000, 287, 820. doi: 10.1126/science.287.5454.820  doi: 10.1126/science.287.5454.820

    21. [21]

      Zhang, Y.; Hong, H.; Cai, W. Curr. Med. Chem.2011, 18, 4185.doi:10.2174/092986711797189547  doi: 10.2174/092986711797189547

    22. [22]

      Li, X.; Zhao, Q.; Qiu, L.J. Control Release2013, 171, 152.doi:10.1016/j.jconrel.2013.06.006  doi: 10.1016/j.jconrel.2013.06.006

    23. [23]

      Wang, H.; Yang, R.; Yang, L.; Tan, W. ACS Nano 2009, 3, 2451.doi:10.1021/nn9006303  doi: 10.1021/nn9006303

    24. [24]

      Stadler, A.; Chi, C.; Der Lelie, D. V.; Gang, O. Nanomedicine2010, 5, 319.doi:10.2217/nnm.10.2  doi: 10.2217/nnm.10.2

    25. [25]

      Lee, J. H.; Yigit, M. V.; Mazumdar, D.; Lu, Y. Adv. Drug Deliv. Rev. 2010, 62, 592.doi:10.1016/j.addr.2010.03.003  doi: 10.1016/j.addr.2010.03.003

    26. [26]

      Chen, T.; Shukoor, M. I.; Chen, Y.; Yuan, Q.; Zhu, Z.; Zhao, Z.; Gulbakan, B.; Tan, W. Nanoscale 2011, 3, 546. doi:10.1039/C0NR00646G  doi: 10.1039/C0NR00646G

    27. [27]

      Zhu, G.; Zhang, S.; Song, E.; Zheng, J.; Hu, R.; Fang, X.; Tan, W. Angew. Chem.2013, 52, 5490. doi:10.1002/anie.201301439  doi: 10.1002/anie.201301439

    28. [28]

      Wang, Y. M.; Wu, Z.; Liu, S. J.; Chu, X. Anal. Chem. 2015, 87, 6470. doi: 10.1021/acs.analchem.5b01634  doi: 10.1021/acs.analchem.5b01634

    29. [29]

      Ding, C. F.; Ge, Y.; Zhang, S. S. Chem.-Eur. J. 2010, 16, doi: 10707.10.1002/chem.201001173

    30. [30]

      Wu, M. S.; Yuan, D. J.; Xu, J. J.; Chen, H. Y. Anal. Chem. 2013, 85, 11960.doi:10.1021/ac402889z  doi: 10.1021/ac402889z

    31. [31]

      Yan, M.; Sun, G. Q.; Liu, F.; Lu, J. J.; Yu, J. H.; Song, X. R. Anal. Chim. Acta2013, 798, 33. doi:10.1016/j.aca.2013.08.046  doi: 10.1016/j.aca.2013.08.046

    32. [32]

      Liu, H. Y.; Xu, S. M.; He, Z. M.; Deng, A. P.; Zhu, J. J. Anal. Chem. 2013, 85, 3385.doi:10.1021/ac303789x  doi: 10.1021/ac303789x

    33. [33]

      Zhao, J. J.; Zhang, L. L.; Chen, C. F.; Jiang, J. H.; Yu, R. Q. Anal. Chim. Acta2012, 745, 106. doi:10.1016/j.aca.2012.07.030  doi: 10.1016/j.aca.2012.07.030

    34. [34]

      Terreno, E.; DelliCastelli, D.; Viale, A.; Aime, S. Chem. Rev. 2010, 110, 3019.doi:10.1021/cr100025t  doi: 10.1021/cr100025t

    35. [35]

      van Dam, G. M.; Themelis, G.; Crane, L. M. A.; Harlaar, N. J.; Pleijhuis, R. G.; Kelder, W.; Sarantopoulos, A.; de Jong, J. S.; Arts, H. J. G.; van der Zee, A. G. J.; Bart, J.; Low, P. S.; Ntziachristos, V. Nat. Med. 2011, 17, 1315. doi:10.1038/nm.2472  doi: 10.1038/nm.2472

    36. [36]

      Louie, A. Y. Chem. Rev. 2010, 110, 3146. doi:10.1021/cr9003538  doi: 10.1021/cr9003538

    37. [37]

      Zhao, Z. L.; Fan, H. H.; Zhou, G. F.; Bai, H. R.; Liang, H.; Wang, R. W.; Zhang, X. B.; Tan, W. H. J. Am. Chem. Soc. 2014, 136, 11220.doi:10.1021/ja5029364  doi: 10.1021/ja5029364

    38. [38]

      Ding, K.; Alemdaroglu, F. E.; Boersch, M.; Berger, R.; Herrmann, A. Angew. Chem.-Int. Edit. 2007, 46, 1172. doi: 10.1002/anie.200603064  doi: 10.1002/anie.200603064

    39. [39]

      Alemdaroglu, F. E.; Alemdaroglu, N. C.; Langguth, P.; Herrmann, A. Macromol. Rapid Commun. 2008, 29, 326. doi:10.1002/marc.200700779  doi: 10.1002/marc.200700779

    40. [40]

      Zhao, Y. Q.; Duan, S. F.; Zeng, X.; Liu, C. J.; Davies, N. M.; Li, B. Y.; Forrest, M. L. Mol. Pharm. 2012, 9, 1705. doi:10.1021/mp3000309  doi: 10.1021/mp3000309

    41. [41]

      Wu, Y. R.; Sefah, K.; Liu, H. P.; Wang, R. W.; Tan, W. H. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 5. doi:10.1073/pnas.0909611107  doi: 10.1073/pnas.0909611107

    42. [42]

      Mallikaratchy, P.; Tang, Z. W.; Kwame, S.; Meng, L.; Shangguan, D. H.; Tan, W. H. Mol. Cell. Proteomics 2007, 6, 2230.doi:10.1074/mcp.M700026-MCP200  doi: 10.1074/mcp.M700026-MCP200

    43. [43]

      Meng, H. M.; Fu, T.; Zhang, X. B.; Tan, W. H. Natl. Sci. Rev. 2015, 2, 71.doi:10.1093/nsr/nwv001  doi: 10.1093/nsr/nwv001

    44. [44]

      Kang, H. Z.; O'Donoghue, M. B.; Liu, H. P.; Tan, W. H. Chem. Commun. 2010, 46, 249.doi:10.1039/b916911c  doi: 10.1039/b916911c

    45. [45]

      Mann, A. P.; Bhavane, R. C.; Somasunderam, A.; Montalvo-Ortiz, B. L.; Ghaghada, K. B.; Volk, D.; Nieves-Alicea, R.; Suh, K. S.; Ferrari, M.; Annapragada, A.; Gorenstein, D. G.; Tanaka, T. Oncotarget2011, 2, 298. doi:10.18632/oncotarget.261  doi: 10.18632/oncotarget.261

    46. [46]

      Drmanac, R.; Sparks, A. B.; Callow, M. J.; Halpern, A. L.; Burns, N. L.; Kermani, B. G.; Carnevali, P.; Nazarenko, I.; Nilsen, G. B.; Yeung, G.; et al.Science 2010, 327, 78.doi:10.1126/science.1181498  doi: 10.1126/science.1181498

    47. [47]

      Zhang, H. M.; Ma, Y. L.; Xie, Y.; An, Y.; Huang, Y. S.; Zhu, Z.; Yang, C. Y. J. Sci. Rep.2015, 5, 10099. doi:10.1038/srep10099  doi: 10.1038/srep10099

    48. [48]

      Wu, C. C.; Han, D.; Chen, T.; Peng, L.; Zhu, G. Z.; You, M. X.; Qiu, L. P.; Sefah, K.; Zhang, X. B.; Tan, W. H. J. Am. Chem. Soc. 2013, 135, 18644.doi:10.1021/ja4094617  doi: 10.1021/ja4094617

    49. [49]

      Zhu, G. Z.; Hu, R.; Zhao, Z. L.; Chen, Z.; Zhang, X. B.; Tan, W. H. J. Am. Chem. Soc. 2013, 135, 16438. doi:10.1021/ja406115e  doi: 10.1021/ja406115e

    50. [50]

      Hu, R.; Zhang, X. B.; Zhao, Z. L.; Zhu, G. Z.; Chen, T.; Fu, T.; Tan, W. H. Angew. Chem.-Int. Edit. 2014, 53, 5821. doi:10.1002/anie.201400323  doi: 10.1002/anie.201400323

    51. [51]

      Liu, Z.; Robinson, J. T.; Tabakman, S. M.; Yang, K.; Dai, H. J. Mater. Today 2011, 14, 316. doi: 10.1016/S1369-7021(11)70161-4  doi: 10.1016/S1369-7021(11)70161-4

    52. [52]

      Yang, L.; Zhang, X. B.; Ye, M.; Jiang, J. H.; Yang, R. H.; Fu, T.; Chen, Y.; Wang, K. M.; Liu, C.; Tan, W. H. Adv. Drug Deliv. Rev. 2011, 63, 1361.doi:10.1016/j.addr.2011.10.002  doi: 10.1016/j.addr.2011.10.002

    53. [53]

      Dobson, J. Nanomedicine: Nanotechnology, Biology, & Medicine 2006, 1, 31.doi:10.2217/17435889.1.1.31  doi: 10.2217/17435889.1.1.31

    54. [54]

      Wang, A. Z.; Bagalkot, V.; Vasilliou, C. C.; Gu, F.; Alexis, F.; Zhang, L.; Shaikh, M.; Yuet, K.; Cima, M. J.; Langer, R.; Kantoff, P. W.; Bander, N. H.; Jon, S. Y.; Farokhzad, O. C. Chem. Med. Chem. 2008, 3, 1311. doi:10.1002/cmdc.200800091  doi: 10.1002/cmdc.200800091

    55. [55]

      Yu, M. K.; Kim, D.; Lee, I. H.; So, J. S.; Jeong, Y. Y.; Jon, S. Small 2011, 7, 2241.doi:10.1002/smll.201100472  doi: 10.1002/smll.201100472

    56. [56]

      Chen, T.; Shukoor, M. I.; Wang, R. W.; Zhao, Z. L.; Yuan, Q.; Bamrungsap, S.; Xiong, X. L.; Tan, W. H. ACS Nano 2011, 5, 7866.doi:10.1021/nn202073m  doi: 10.1021/nn202073m

    57. [57]

      Zheng, J.; Zhu, G. Z.; Li, Y. H.; Li, C. M.; You, M. X.; Chen, T.; Song, E. Q.; Yang, R. H.; Tan, W. H. ACS Nano 2013, 7, 6545.doi:10.1021/nn402344v  doi: 10.1021/nn402344v

    58. [58]

      Wijaya, A.; Schaffer, S. B.; Pallares, I. G.; Hamad-Schifferli, K. ACS Nano 2009, 3, 80.doi:10.1021/nn800702n  doi: 10.1021/nn800702n

    59. [59]

      Yang, X. J.; Liu, X.; Liu, Z.; Pu, F.; Ren, J. S.; Qu, X. G. Adv. Mater. 2012, 24, 2890.doi:10.1002/adma.201104797  doi: 10.1002/adma.201104797

    60. [60]

      Chen, C. C.; Lin, Y. P.; Wang, C. W.; Tzeng, H. C.; Wu, C. H.; Chen, Y. C.; Chen, C. P.; Chen, L. C.; Wu, Y. C. J. Am. Chem. Soc. 2006, 128, 3709.doi:10.1021/ja0570180  doi: 10.1021/ja0570180

    61. [61]

      You, J.; Zhang, G. D.; Li, C. ACS Nano 2010, 4, 1033. doi:10.1021/nn901181c  doi: 10.1021/nn901181c

    62. [62]

      Yang, X.; Yang, M. X.; Pang, B.; Vara, M.; Xia, Y. N. Chem. Rev. 2015, 115, 10410.doi:10.1021/acs.chemrev.5b00193  doi: 10.1021/acs.chemrev.5b00193

    63. [63]

      Kim, D.; Jeong, Y. Y.; Jon, S. ACS Nano 2010, 4, 3689. doi:10.1021/nn901877h  doi: 10.1021/nn901877h

    64. [64]

      Kang, H. Z.; Trondoli, A. C.; Zhu, G. Z.; Chen, Y.; Chang, Y. J.; Liu, H. P.; Huang, Y. F.; Zhang, X. L.; Tan, W. H. ACS Nano 2011, 5, 5094.doi:10.1021/nn201171r  doi: 10.1021/nn201171r

    65. [65]

      Qiu, L. P.; Chen, T.; Ocsoy, I.; Yasun, E.; Wu, C. C.; Zhu, G. Z.; You, M. X.; Han, D.; Jiang, J. H.; Yu, R. Q.; Tan, W. H. Nano Lett. 2015, 15, 457.doi:10.1021/nl503777s  doi: 10.1021/nl503777s

    66. [66]

      Park, H.; Yang, J.; Lee, J.; Haam, S.; Choi, I. H.; Yoo, K. H. ACS Nano 2009, 3, 2919.doi:10.1021/nn900215k  doi: 10.1021/nn900215k

    67. [67]

      Park, J. H.; von Maltzahn, G.; Xu, M. J.; Fogal, V.; Kotamraju, V. R.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 981. doi:10.1073/pnas.0909565107  doi: 10.1073/pnas.0909565107

    68. [68]

      Dolmans, D.; Fukumura, D.; Jain, R. K. Nat. Rev. Cancer 2003, 3, 380.doi:10.1038/nrc1071  doi: 10.1038/nrc1071

    69. [69]

      Bugaj, A. M. Photochem. Photobiol. Sci. 2011, 10, 1097. doi:10.1039/c0pp00147c  doi: 10.1039/c0pp00147c

    70. [70]

      Vrouenraets, M. B.; Visser, G. W. M.; Snow, G. B.; van Dongen, G. Anticancer Res. 2003, 23, 505.

    71. [71]

      Ferreira, C. S. M.; Cheung, M. C.; Missailidis, S.; Bisland, S.; Gariepy, J. Nucleic Acids Res. 2009, 37, 866. doi:10.1093/nar/gkn967  doi: 10.1093/nar/gkn967

    72. [72]

      Mallikaratchy, P.; Tang, Z. W.; Tan, W. H. Chem. Med. Chem.2008, 3, 425.doi:10.1002/cmdc.200700260  doi: 10.1002/cmdc.200700260

    73. [73]

      Wang, K. L.; You, M. X.; Chen, Y.; Han, D.; Zhu, Z.; Huang, J.; Williams, K.; Yang, C. J.; Tan, W. H. Angew. Chem.-Int. Edit. 2011, 50, 6098.doi:10.1002/anie.201008053  doi: 10.1002/anie.201008053

    74. [74]

      Shieh, Y. A.; Yang, S. J.; Wei, M. F.; Shieh, M. J. ACS Nano 2010, 4, 1433.doi:10.1021/nn901374b  doi: 10.1021/nn901374b

    75. [75]

      Han, D.; Zhu, G. Z.; Wu, C. C.; Zhu, Z.; Chen, T.; Zhang, X. B.; Tan, W. H. ACS Nano 2013, 7, 2312. doi:10.1021/nn305484p  doi: 10.1021/nn305484p

    76. [76]

      Shiao, Y.S.; Chiu, H.H.; Wu, P.H.; Huang, Y.F. ACS Appl Mater Interfaces 2014, 6, 21832.doi:10.1021/am5026243  doi: 10.1021/am5026243

    77. [77]

      Yuan, Q.; Wu, Y.; Wang, J.; Lu, D. Q.; Zhao, Z. L.; Liu, T.; Zhang, X. B.; Tan, W. H. Angew. Chem. Int. Edit. 2013, 52, 13965.doi:10.1002/anie.201305707  doi: 10.1002/anie.201305707

    78. [78]

      Li, L. L.; Zhang, R. B.; Yin, L. L.; Zheng, K. Z.; Qin, W. P.; Selvin, P. R.; Lu, Y. Angew. Chem. Int. Edit. 2012, 51, 6121.doi:10.1002/anie.201109156  doi: 10.1002/anie.201109156

    79. [79]

      Wang, M.; Mi, C. C.; Wang, W. X.; Liu, C. H.; Wu, Y. F.; Xu, Z. R.; Mao, C. B.; Xu, S. K. ACS Nano 2009, 3, 1580. doi:10.1021/nn900491j  doi: 10.1021/nn900491j

    80. [80]

      Li, H.; Wang, L. Y. Chem.-Asian J. 2014, 9, 153. doi:10.1002/asia.201300897  doi: 10.1002/asia.201300897

    81. [81]

      Yuan, Q.; Wu, Y.; Wang, J.; Lu, D. Q.; Zhao, Z. L.; Liu, T.; Zhang, X. B.; Tan, W. H. Angew. Chem. Int. Edit. 2013, 52, 13965.doi:10.1002/anie.201305707  doi: 10.1002/anie.201305707

    82. [82]

      Fisher, J. W.; Sarkar, S.; Buchanan, C. F.; Szot, C. S.; Whitney, J.; Hatcher, H. C.; Torti, S. V.; Rylander, C. G.; Rylander, M. N. Cancer Res. 2010, 70, 9855. doi:10.1158/0008-5472.can-10-0250  doi: 10.1158/0008-5472.can-10-0250

    83. [83]

      Yang, H. W.; Lu, Y. J.; Lin, K. J.; Hsu, S. C.; Huang, C. Y.; She, S. H.; Liu, H. L.; Lin, C. W.; Xiao, M. C.; Wey, S. P.; Chen, P. Y.; Yen, T. C.; Wei, K. C.; Ma, C. C. M. Biomaterials 2013, 34, 7204.doi:10.1016/j.biomaterials.2013.06.007  doi: 10.1016/j.biomaterials.2013.06.007

    84. [84]

      Xiao, Q. F.; Zheng, X. P.; Bu, W. B.; Ge, W. Q.; Zhang, S. J.; Chen, F.; Xing, H. Y.; Ren, Q. G.; Fan, W. P.; Zhao, K. L.; Hua, Y. Q.; Shi, J. L. J. Am. Chem. Soc. 2013, 135, 13041.doi:10.1021/ja404985w  doi: 10.1021/ja404985w

    85. [85]

      Jain, P. K.; Huang, X. H.; El-Sayed, I. H.; El-Sayed, M. A. Accounts Chem. Res. 2008, 41, 1578.doi:10.1021/ar7002804  doi: 10.1021/ar7002804

    86. [86]

      Peer, D.; Karp, J. M.; Hong, S.; FaroKhzad, O. C.; Margalit, R.; Langer, R. Nat. Nanotechnol. 2007, 2, 751. doi:10.1038/nnano.2007.387  doi: 10.1038/nnano.2007.387

    87. [87]

      Huang, Y. F.; Sefah, K.; Bamrungsap, S.; Chang, H. T.; Tan, W. Langmuir 2008, 24, 11860.doi:10.1021/la801969c  doi: 10.1021/la801969c

    88. [88]

      Kuo, W. S.; Chang, C. N.; Chang, Y. T.; Yang, M. H.; Chien, Y. H.; Chen, S. J.; Yeh, C. S. Angew. Chem. Int. Edit. 2010, 49, 2711.doi:10.1002/anie.200906927  doi: 10.1002/anie.200906927

    89. [89]

      Wang, J.; Zhu, G. Z.; You, M. X.; Song, E. Q.; Shukoor, M. I.; Zhang, K. J.; Altman, M. B.; Chen, Y.; Zhu, Z.; Huang, C. Z.; Tan, W. H. ACS Nano 2012, 6, 5070. doi:10.1021/nn300694v  doi: 10.1021/nn300694v

    90. [90]

      Robinson, J. T.; Tabakman, S. M.; Liang, Y. Y.; Wang, H. L.; Casalongue, H. S.; Vinh, D.; Dai, H. J. J. Am. Chem. Soc. 2011, 133, 6825.doi:10.1021/ja2010175  doi: 10.1021/ja2010175

    91. [91]

      Su, S. H.; Wang, J. L.; Wei, J. H.; Martinez-Zaguilan, R.; Qiu, J. J.; Wang, S. R. New J. Chem. 2015, 39, 5743. doi:10.1039/c5nj00122f  doi: 10.1039/c5nj00122f

    92. [92]

      Li, Q.; Hong, L.; Li, H.; Liu, C. BiosensBioelectron2017, 89, Part 1, 477.doi:10.1016/j.bios.2016.03.072  doi: 10.1016/j.bios.2016.03.072

    93. [93]

      Khan, S. A.; Kanchanapally, R.; Fan, Z.; Beqa, L.; Singh, A. K.; Senapati, D.; Ray, P. C. Chem. Commun. 2012, 48, 6711. doi: 10.1039/c2cc32313c  doi: 10.1039/c2cc32313c

    94. [94]

      Parak, W. J.; Gerion, D.; Pellegrino, T.; Zanchet, D.; Micheel, C.; Williams, S. C.; Boudreau, R.; Le Gros, M. A.; Larabell, C. A.; Alivisatos, A. P. Nanotechnology2003, 14, R15. doi: 10.1088/0957-4484/14/7/201  doi: 10.1088/0957-4484/14/7/201

    95. [95]

      Wang, J. Analyst 2005, 130, 421. doi: 10.1039/b414248a  doi: 10.1039/b414248a

    96. [96]

      Pankhurst, Q.; Jones, S.; Dobson, J. J. Phys. D-Appl. Phys. 2016, 49, R167. doi: 10.1088/0022-3727/49/50/501002  doi: 10.1088/0022-3727/49/50/501002

    97. [97]

      Cuenot, S.; Fretigny, C.; Demoustier-Champagne, S.; Nysten, B. Phys. Rev. B 2004, 69, 165410. doi: 10.1103/PhysRevB.69.165410  doi: 10.1103/PhysRevB.69.165410

    98. [98]

      Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Annu. Rev. Mater. Sci. 2000, 30, 545. doi: 10.1146/annurev.matsci.30.1.545  doi: 10.1146/annurev.matsci.30.1.545

    99. [99]

      Albert, K.; Hsu, H.Y. Molecules 2016, 21, 1585. doi: 10.3390/molecules21111585  doi: 10.3390/molecules21111585

    100. [100]

      Liang, C.; Guo, B. S.; Wu, H.; Shao, N. S.; Li, D. F.; Liu, J.; Dang, L.; Wang, C.; Li, H.; Li, S. H.; et al. Nat. Med. 2015, 21, 288. doi: 10.1038/nm.37  doi: 10.1038/nm.37

  • 加载中
    1. [1]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    2. [2]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    3. [3]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    4. [4]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    5. [5]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    6. [6]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    7. [7]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    8. [8]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    13. [13]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    14. [14]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    15. [15]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    16. [16]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    17. [17]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    18. [18]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(8)
  • Abstract views(550)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return