Which Information Theoretic Quantity Should We Choose for Steric Analysis of Water Nanoclusters (H2O)n (n = 6, 32, 64)?
- Corresponding author: ALIPOUR Mojtaba, malipour@shirazu.ac.ir
 
	            Citation:
	            
		            ALIPOUR Mojtaba. Which Information Theoretic Quantity Should We Choose for Steric Analysis of Water Nanoclusters (H2O)n (n = 6, 32, 64)?[J]. Acta Physico-Chimica Sinica,
							;2018, 34(4): 407-413.
						
							doi:
								10.3866/PKU.WHXB201708175
						
					
				
					
				
	        
	                Taft, R. W., Jr. Steric Effect in Organic Chemistry; Newman, M. S. Ed.; Wiley: New York, 1956.
				Hoffmann, R. J. Mol. Struct. (THEOCHEM) 1998, 1, 424. doi: 10.1016/S0166-1280(97)00219-4
												 doi: 10.1016/S0166-1280(97)00219-4
											
										
				Ayers, P. W. J. Chem. Phys. 2000, 113, 10886. doi: 10.1063/1.1327268
												 doi: 10.1063/1.1327268
											
										
				Parr, R. G.; Ayers, P. W.; Nalewajski, R. F. J. Phys. Chem. A 2005, 109, 3957. doi: 10.1021/jp0404596
												 doi: 10.1021/jp0404596
											
										
				Ayers, P. W. Faraday Discuss. 2007, 135, 161. doi: 10.1039/B606877D
												 doi: 10.1039/B606877D
											
										
				Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864. doi: 10.1103/PhysRev.136.B864
												 doi: 10.1103/PhysRev.136.B864
											
										
				Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133. doi: 10.1103/PhysRev.140.A1133
												 doi: 10.1103/PhysRev.140.A1133
											
										
Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford: New York, 1989.
Tsuneda, T. Density Functional Theory in Quantum Chemistry; Springer: New York, 2014.
				Liu, S. B. J. Chem. Phys. 2007, 126, 244103. doi: 10.1063/1.2747247
												 doi: 10.1063/1.2747247
											
										
				von Weizsäcker, C. F. Z. Phys. 1935, 96, 431. doi: 10.1007/BF01337700
												 doi: 10.1007/BF01337700
											
										
				Liu, S. B.; Govind, N.; Pedersen, L. G. J. Chem. Phys. 2008, 129, 094104. doi: 10.1063/1.2976767
												 doi: 10.1063/1.2976767
											
										
				Torrent-Sucarrat, M.; Liu, S. B.; De Proft, F. J. Phys. Chem. A 2009, 113, 3698. doi: 10.1021/jp8096583
												 doi: 10.1021/jp8096583
											
										
				Tsirelson, V. G.; Stash A. I.; Liu, S. B. J. Chem. Phys. 2010, 133, 114110. doi: 10.1063/1.3492377
												 doi: 10.1063/1.3492377
											
										
				Esquivel, R. O.; Liu, S. B.; Angulo, J. C.; Dehesa, J. S.; Antolín, J.; Molina-Espíritu, M. J. Phys. Chem. A 2011, 115, 4406. doi: 10.1021/jp1095272
												 doi: 10.1021/jp1095272
											
										
				Huang, Y.; Zhong, A.-G.; Yang, Q.; Liu, S. B. J. Chem. Phys.2011, 134, 084103. doi: 10.1063/1.3555760
												 doi: 10.1063/1.3555760
											
										
				Alipour, M.; Mohajeri, A. Mol. Phys. 2012, 110, 2895. doi: 10.1080/00268976.2012.679638
												 doi: 10.1080/00268976.2012.679638
											
										
				Rincón, L.; Almeida, R. J. Phys. Chem. A2012, 116, 7523. doi: 10.1021/jp300160g
												 doi: 10.1021/jp300160g
											
										
				Alipour, M.; Mohajeri, A. J. Phys. Org. Chem. 2012, 25, 797. doi: 10.1002/poc.2921
												 doi: 10.1002/poc.2921
											
										
				Liu, S. B. J. Phys. Chem. A 2013, 117, 962. doi: 10.1021/jp312521z
												 doi: 10.1021/jp312521z
											
										
				Rong, C.; Lu, T.; Liu, S. B. J. Chem. Phys. 2014, 140, 024109. doi: 10.1063/1.4860969
												 doi: 10.1063/1.4860969
											
										
				Alipour, M. Chem. Phys. 2014, 434, 11. doi: 10.1016/j.chemphys.2014.02.008
												 doi: 10.1016/j.chemphys.2014.02.008
											
										
				Liu, S. B.; Schauer, C. K. J. Chem. Phys. 2015, 142, 054107. doi: 10.1063/1.4907365
												 doi: 10.1063/1.4907365
											
										
				S. B. Liu, J. Phys. Chem. A 2015, 119, 3107. doi: 10.1021/acs.jpca.5b00443
												 doi: 10.1021/acs.jpca.5b00443
											
										
				Wu, Z.; Rong, C.; Lu, T.; Ayers, P. W.; Liu, S. B. Phys. Chem. Chem. Phys. 2015, 17, 27052. doi: 10.1039/C5CP04442A
												 doi: 10.1039/C5CP04442A
											
										
				Fisher, R. A. Proc. Cambridge Philols. Soc. 1925, 22, 700. doi: 10.1017/S0305004100009580
												 doi: 10.1017/S0305004100009580
											
										
				Shannon, C. E. Bell Syst. Tech. J. 1948, 27, 379. doi: 10.1002/bltj.1948.27.issue-3
												 doi: 10.1002/bltj.1948.27.issue-3
											
										
				Onicescu, O. C. R. Acad. Sci. Paris A 1966, 263, 25.
										
				Ghosh, S. K.; Berkowitz, M.; Parr, R. G. Proc.Natl. Acad.Sci. U. S. A. 1984, 81, 8028. doi: 10.1073/pnas.81.24.8028
												 doi: 10.1073/pnas.81.24.8028
											
										
				Parr, R. G.; Ayers P. W.; Nalewajski, R. F. J. Phys. Chem. A 2005, 109, 3957. doi: 10.1021/jp0404596
												 doi: 10.1021/jp0404596
											
										
				Sen, K. D.; Katriel, J. J. Chem. Phys. 2006, 125, 074117. doi: 10.1063/1.2263710
												 doi: 10.1063/1.2263710
											
										
				Ayers, P. W. Theor. Chem. Acc. 2006, 115, 370. doi: 10.1007/s00214-006-0121-5
												 doi: 10.1007/s00214-006-0121-5
											
										
				Nagy, Á. Chem. Phys. Lett. 2007, 449, 212. doi: 10.1016/j.cplett.2007.10.026
												 doi: 10.1016/j.cplett.2007.10.026
											
										
				Borgoo, A.; Geerlings, P.; Sen, K. D. Phys. Lett. A 2008, 372, 5106. doi: 10.1016/j.physleta.2008.05.072
												 doi: 10.1016/j.physleta.2008.05.072
											
										
				Nagy Á.; Liu, S. B. Phys. Lett. A 2008, 372, 1654. doi: 10.1016/j.physleta.2007.10.055
												 doi: 10.1016/j.physleta.2007.10.055
											
										
				Angulo, J. C.; Antolín, J. J. Chem. Phys. 2008, 128, 164109. doi: 10.1063/1.2907743
												 doi: 10.1063/1.2907743
											
										
				Tsirelson, V. G.; Nagy, Á. J. Phys. Chem. A 2009, 113, 9022. doi: 10.1021/jp904836j
												 doi: 10.1021/jp904836j
											
										
				Nagy, Á.; Romera, E. Chem. Phys. Lett. 2010, 490, 242. doi: 10.1016/j.cplett.2010.03.057
												 doi: 10.1016/j.cplett.2010.03.057
											
										
				Geerlings, P.; Borgoo, A. Phys. Chem. Chem. Phys. 2011, 13, 911. doi: 10.1039/C0CP01046D
												 doi: 10.1039/C0CP01046D
											
										
				Alipour, M. Mol. Phys. 2013, 111, 3246. doi: 10.1080/00268976.2013.777814.
												 doi: 10.1080/00268976.2013.777814
											
										
				Alipour, M. Chem. Phys. Lett. 2015, 635, 210. doi: 10.1016/j.cplett.2015.06.073
												 doi: 10.1016/j.cplett.2015.06.073
											
										
				Nagy, Á. Int. J. Quantum Chem. 2015, 115, 1392. doi: 10.1002/qua.24812
												 doi: 10.1002/qua.24812
											
										
				Esquivel, R. O.; Molina-Espíritu, M.; López-Rosa, S.; Soriano-Correa, C.; Barrientos-Salcedo, C.; Kohout, M.; Dehesa, J. S. ChemPhysChem 2015, 16, 2571. doi: 10.1002/cphc.201500282
												 doi: 10.1002/cphc.201500282
											
										
				Delle Site, L. Int. J. Quantum Chem. 2015, 115, 1396. doi: 10.1002/qua.24823
												 doi: 10.1002/qua.24823
											
										
				Liu, S. B. J. Chem. Phys. 2007, 126, 191107. doi: 10.1063/1.2741244
												 doi: 10.1063/1.2741244
											
										
				Alipour, M.; Mohajeri, A. Mol. Phys. 2012, 110, 403. doi: 10.1080/00268976.2011.649795
												 doi: 10.1080/00268976.2011.649795
											
										
				Liu, S. B. Acta Phys. -Chim. Sin.2016, 32, 98. doi: 10.3866/PKU.WHXB201510302
												 doi: 10.3866/PKU.WHXB201510302
											
										
				Alipour, M.; Safari, Z. Phys. Chem. Chem. Phys. 2016, 18, 17917. doi: 10.1039/C6CP02750D
												 doi: 10.1039/C6CP02750D
											
										
				Wang, Y. J.; Zhao, D. B.; Rong, C. Y.; Liu, S. B. Acta Phys. -Chim. Sin.2013, 29, 2173. doi: 10.3866/PKU.WHXB201308272
												 doi: 10.3866/PKU.WHXB201308272
											
										
				Alipour, M. Chem. Phys. 2014, 434, 11. doi: 10.1016/j.chemphys.2014.02.008
												 doi: 10.1016/j.chemphys.2014.02.008
											
										
Frieden, B. R. Physics from Fisher Information; Cambridge University Press: Cambridge, 1998.
				Hincapié, G.; Acelas, N.; Castaño, M.; David, J.; Restrepo, A. J. Phys. Chem. A 2010, 114, 7809. doi: 10.1021/jp103683m
												 doi: 10.1021/jp103683m
											
										
				Yuan, D.; Li, Y.; Ni, Z.; Pulay, P.; Li, W.; Li, S. J. Chem. Theory Comput. 2017, 13, 2696. doi: 10.1021/acs.jctc.7b00284
												 doi: 10.1021/acs.jctc.7b00284
											
										
Frisch M. J., Trucks G. W., Schlegel H. B.. Gaussian09, Revision B.01[J]. Gaussian Inc.: Wallingford, CT, 2010.
				Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.v33.5
												 doi: 10.1002/jcc.v33.5
											
										
				Zhou, X. Y.; Rong, C.; Lu, T.; Zhou, P.; Liu, S. B. J. Phys. Chem. A 2016, 120, 3634. doi: 10.1021/acs.jpca.6b01197
												 doi: 10.1021/acs.jpca.6b01197
											
										
				Zhou, X.; Yu, D.; Rong, C.; Lu, T.; Liu, S. B. Chem. Phys. Lett. 2017, 684, 97. doi: 10.1021/acs.jpca.6b01197
												 doi: 10.1021/acs.jpca.6b01197
											
										
				Maroulis, G. J. Chem. Phys. 2000, 113, 1813. doi: 10.1063/1.481985
												 doi: 10.1063/1.481985
											
										
				Maroulis, G. Int. J. Quantum Chem. 2012, 112, 2231. doi: 10.1002/qua.23186
												 doi: 10.1002/qua.23186
											
										
						
						
						
	                Heng Gao , Zhaocong Cheng , Guangshui Tu , Zonglin Qiu , Xieyi Xiao , Haotian Zhou , Handou Zheng , Haiyang Gao . Thermally robust bis(imino)pyridyl iron catalysts for ethylene polymerization: Synergy effects of weak π-π interaction, steric bulk, and electronic tuning. Chinese Chemical Letters, 2025, 36(5): 110762-. doi: 10.1016/j.cclet.2024.110762
Minghao Hu , Tianci Xie , Yuqiang Hu , Longjie Li , Ting Wang , Tongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232
Zixi Zou , Jingyuan Wang , Yian Sun , Qian Wang , Da-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972
Yinghao Zhang , Ke Shao , Yihang Zhu , Haokun Zhang , Yinuo Zhuo , Huihui Bao , Yeye Ai , Yongguang Li . Unanticipated optical properties of π-conjugated cyclometalated Pt(Ⅱ) complexes for advanced information storage and anti-counterfeiting materials. Chinese Chemical Letters, 2025, 36(9): 110735-. doi: 10.1016/j.cclet.2024.110735
Wen-Jun Xia , Yong-Jiang Wang , Yun-Fei Cao , Cai Sun , Xin-Xiong Li , Yan-Qiong Sun , Shou-Tian Zheng . A luminescent folded S-shaped high-nuclearity Eu19-oxo-cluster embedded polyoxoniobate for information encryption. Chinese Chemical Letters, 2025, 36(2): 110248-. doi: 10.1016/j.cclet.2024.110248
Yu Xiong , Li-Jun Hu , Jian-Guo Song , Di Zhang , Yi-Shuang Peng , Xiao-Jun Huang , Jian Hong , Bin Zhu , Wen-Cai Ye , Ying Wang . Structure elucidation of plumerubradins A–C: Correlations between 1H NMR signal patterns and structural information of [2+2]-type cyclobutane derivatives. Chinese Chemical Letters, 2025, 36(5): 110149-. doi: 10.1016/j.cclet.2024.110149
Hong Wang , Yong Tian , Tiancheng Wu , Shun He , Jiaxi Cui , Jian Chen , Xudong Chen . Photoswitchable dual-color fluorescent polymeric nanoparticles for self-erased time-resolved information encryption and anti-counterfeiting. Chinese Chemical Letters, 2025, 36(7): 110509-. doi: 10.1016/j.cclet.2024.110509
Mingxing Chen , Xue Li , Nian Liu , Zihe Du , Zhitao Wang , Jing Qi . A zinc-nitrate battery for efficient ammonia electrosynthesis and energy output by a high entropy hydroxide catalyst. Chinese Chemical Letters, 2025, 36(10): 111294-. doi: 10.1016/j.cclet.2025.111294
Hui Peng , Xiao Wang , Weiguo Huang , Shuiyue Yu , Linghang Kong , Qilin Wei , Jialong Zhao , Bingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720
Genxiang Wang , Linfeng Fan , Peng Wang , Junfeng Wang , Fen Qiao , Zhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498
Fan Wu , Shaoyang Wu , Xin Ye , Yurong Ren , Peng Wei . Research progress of high-entropy cathode materials for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(4): 109851-. doi: 10.1016/j.cclet.2024.109851
Wenfeng Zang , Yixin Sun , Jingyi Zhang , Yanzhong Hao , Qianhui Jin , Hongying Xiao , Zuo Zhang , Xianbao Shi , Jin Sun , Zhonggui He , Cong Luo , Bingjun Sun . Two-tailed modification module tuned steric-hindrance effect enabling high therapeutic efficacy of paclitaxel prodrug nanoassemblies. Chinese Chemical Letters, 2025, 36(5): 110230-. doi: 10.1016/j.cclet.2024.110230
Jinqiang Gao , Haifeng Yuan , Xinjuan Du , Feng Dong , Yu Zhou , Shengnan Na , Yanpeng Chen , Mingyu Hu , Mei Hong , Shihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232
Kaili Wang , Pengcheng Liu , Mingzhe Wang , Tianran Wei , Jitao Lu , Xingling Zhao , Zaiyong Jiang , Zhimin Yuan , Xijun Liu , Jia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532
Yanhua Peng , Xin Yu , Ting Wang . Adaptive nanoconfined Fenton-like reactions: Tailoring carbon pathways for sustainable water treatment and energy harvesting. Chinese Chemical Letters, 2024, 35(12): 110198-. doi: 10.1016/j.cclet.2024.110198
Xiaoyao Ma , Jinling Zhang , Ge Fang , He Gao , Jie Gao , Li Fu , Yuanyuan Hou , Gang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823
Hongen Cao , Xinrui Xiao , Xu Zhang , Yiyang Zhang , Lei Yu . Element Transfer Reaction theory: Scientific connotation and its applications in chemical industry. Chinese Chemical Letters, 2025, 36(9): 110924-. doi: 10.1016/j.cclet.2025.110924
Hongliang Zeng , Yuan Ji , Jinfeng Wen , Xu Li , Tingting Zheng , Qiu Jiang , Chuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686