Loading [MathJax]/jax/output/SVG/jax.js

Citation: JIANG Xiaoyu, WU Wei, MO Yirong. Strength of Intramolecular Hydrogen Bonds[J]. Acta Physico-Chimica Sinica, ;2018, 34(3): 278-285. doi: 10.3866/PKU.WHXB201708174 shu

Strength of Intramolecular Hydrogen Bonds

  • Corresponding author: MO Yirong, yirong.mo@wmich.edu
  • Received Date: 17 July 2017
    Revised Date: 10 August 2017
    Accepted Date: 14 August 2017
    Available Online: 17 March 2017

  • The concept of resonance-assisted hydrogen bonds (RAHBs) highlights the synergistic interplay between the π-resonance and hydrogen bonding interactions. This concept has been well-accepted in academia and is widely used in practice. However, it has been argued that the seemingly enhanced intramolecular hydrogen bonding (IMHB) in unsaturated compounds may simply be a result of the constraints imposed by the σ-skeleton framework. Thus, it is crucial to estimate the strength of IMHBs. In this work, we used two approaches to probe the resonance effect and estimate the strength of the IMHBs in the two exemplary cases of the enol forms of acetylacetone and o-hydroxyacetophenone. One approach is the block-localized wavefunction (BLW) method, which is a variant of the ab initio valence bond (VB) theory. Using this approach, it is possible to derive the geometries and energetics with resonance shut down. The other approach is Edmiston's truncated localized molecular orbital (TLMO) technique, which monitors the energy changes by removing the delocalization tails from localized molecular orbitals. The integrated BLW and TLMO studies confirmed that the hydrogen bonding in these two molecules is indeed enhanced by π-resonance, and that this enhancement is not a result of σ constraints.
  • 1   Introduction

    As one of the most fundamental concepts in chemistry, biology and material science, hydrogen bond (H-bond) has been extensively studied experimentally and theoretically1-6. It ubiquitously exists among molecules (intermolecularly) or within a single molecule (intramolecularly). One kind of prominent examples for the intramolecular H-bond (IMHB) is nucleic acids where H-bonding interactions among base pairs dominate the three-dimensional structures and help determine the physiological or biochemical properties of DNA molecules. In the past two decades, a number of strong and unconventional hydrogen bonds, such as resonance-assisted hydrogen bonds (RAHBs)7-11, have been identified and recognized. The proposal of RAHB comes from the observation of the crystal structures of β-diketo enols by Gilli and coworkers, who interpreted the enhanced intramolecular (also intermolecular) H-bonding interaction evidenced by the shortened H-bond distance in terms of resonance7. In β-diketone enols, the intramolecular …O=C―C=C―OH… H-bond, where donor and acceptor are connected through π-conjugated double bonds, is enhanced by the resonance and results in the shortening of O…O distances (2.39-2.44 Å, 1 Å = 0.1 nm)11. This shortening of the hydrogen bonds is associated with a decrease (i.e., red-shift) of O―H vibrational frequencies and abnormal downfield 1H NMR chemical shifts8. In general, π-electron delocalization results in the effective mixing of resonance forms, and is responsible for very strong H-bonds with low energy-barrier height for the proton-transfer reaction. For the instance of the enol form of acetylacetone (AcAc), which is a prototypical enolone and has been well studied both experimentally and theoretically, the ground state can be treated as a mixture of tautomeric forms (enol-keto) and (keto-enol)7, 12, 13.

    图Scheme 1 Tautomeric forms of acetylacetone (AcAc). Scheme1. Tautomeric forms of acetylacetone (AcAc).

    However, as Sanz et al. argued, the seemingly enhanced IMHBs in unsaturated compounds may simply result from the constraints imposed by the σ-skeleton framework14, 15. Alkorta et al. also computed magnetic properties as a probe for the RAHB phenomenon and found that neither the spin-spin coupling constants nor the proton chemical shifts provide any evidence for the existence of RAHBs16, 17. Energy decomposition analysis of a series of conjugated dimers linked by H-bonds showed that the enhanced interactions mostly originate from the classical dipole-dipole (i.e., electrostatic) attraction as resonance redistributes the electron density and increases the dipole moments in monomers, and the covalence of H-bonds changes very little if the resonance is quenched at the same nuclear arrangement18. But we note that intramolecular H-bonds differ from intermolecular H-bonds, irrespective of whether they are coupled with the -conjugated system or not. As such, we need figure out computational strategies of evaluating both the strength of resonance19 and the strength of IMHB20-28. The former can be tackled with our block-localized wavefunction (BLW) method which is the simplest variant of ab initio valence bond (VB) theory29-32 and can shut down the resonance to efficiently derive the geometry and energetics for an electron-localized state33-35. Thus, the remaining question is how to evaluate the strength of IMHBs.

    While the strength of intermolecular H-bond in a complex can be easily evaluated through a supramolecular approach where the H-bond strength is the energy variation from free monomers to the complex, there are difficulties in the proper evaluation of the strength of IMHB. Various approximated approaches thus have been developed28, 36-39. Gilli et al. suggested that the H-bond strengths can be reasonably predicted from acid-base molecular properties, or the pKa slide rule27. But the simplest and most popular one is to rotate the bridging X―H group around the vicinal C―X bond by 180 from its equilibrium position between the two heavy atoms, and the subsequent energy variation along the rotation is taken as the H-bond energy19, 40-42. As a further improvement, Wang et al. rotated relevant dihedral angles to disable IMHBs but compensated the steric effect involved in the rotation process which is derived from a model system where the H-bond donor is substituted by a methylene group23, 43. A complex conformational analysis adopted by Jablonski et al. is also based on the energy differences among the conformers resulting from the rotation of the donor and acceptor groups to predict the energy of the H-bond24. By the use of appropriate reference molecules, isodesmic reactions can be designed to derive the H-bond energy44. Deshmukh et al. proposed the molecular tailoring approach on the basis of the systematic fragmentation scheme26, 45. Obviously, the use of model systems or the change of geometries in the above approaches inevitably introduces indefinite factors to the measure of IMHB strengths. Alternatively, Bader's quantum theory of atoms in molecules (QTAIM) approach46 has been extensively applied to the study of H-bonds39, 47, 48. But evidences show that the estimate of H-bond strengths based on the QTAIM topological properties is imperfect49. The natural bond orbital (NBO) method has been broadly used for the study of H-bonds50, 51. But due to the non-optimal nature of NBOs, the charge transfer (hyperconjugation) energy has been proved to be highly overestimated52-56.

    To shed light into the nature of IMHB assisted by resonance, in this paper we lay out a novel strategy including two unique approaches, namely our BLW method33-35 and Edmiston's truncated localized molecular orbital (TLMO) technique57, to study two exemplary systems of intramolecular homonuclear O―H…O H-bonds including acetylacetone (AcAc) and o-hydroxyacetophenone (oHAP), as shown in Fig. 1. Whereas the BLW method can examine the impact of π resonance on the structures and energetics of molecules with intramolecular H-bonding interaction, the TLMO technique can probe the magnitude of covalence in IMHBs57, 58.

    图1 Two molecules of IMHBs studied in this work. Figure1. Two molecules of IMHBs studied in this work.

    2   Method

    2.1   Block-localized wavefunction (BLW) method

    Within the VB theory, a conjugated system is described by a number of resonance structures whose wavefunctions can be individually defined with Heitler-London-Slater-Pauling (HLSP) functions as

    where ML is the normalization constant, ˆA is the antisymmetrizer and φ2i-1, 2i is a bond function composed of non-orthogonal orbitals ϕ2i-1 and ϕ2i (or a lone pair if ϕ2i-1 = ϕ2i).

    The overall many-electron wave function for an adiabatic state is a linear combination of several important VB functions and the resonance energy is the energy difference between the most stable resonance structure and the adiabatic state. Ab initio VB theory has been rejuvenated in the past two decades with a few practical programs notably the XMVB32, 59, 60. To simplify the computational costs involved in Eq.(1), we can represent bond orbitals with nonorthogonal doubly occupied fragment-localized orbitals (or group functions)61-66. Based on the conventional VB ideas, we proposed the BLW method where a BLW corresponds to a unique electron-localized diabatic state (usually the most stable resonance state). The fundamental assumption is that the total electrons and primitive basis functions (χμ) can be divided into k subgroups (blocks), and each MO is block-localized and expanded in only one block. Assuming that there are mi basis and ni electrons for block i, we can express block-localized MOs for this block as

    Subsequently, the BLW for a closed-shell is defined using a Slater determinant as

    Orbitals in the same subspace are subject to the orthogonality constraint, but orbitals belonging to different subspaces are nonorthogonal. Thus, the BLW method combines the advantages of both MO and VB theories. The BLW method is available at the DFT level with the geometry optimization and frequency computation capabilities34, 67. We note that the electron density (ρBLW) corresponding to the BLW state is different from the density for the ground state (ρ) which can be obtained by standard MO or DFT calculations.

    2.2   Truncated localized MOs (LMO) approach

    A covalent bond (Eq.(2)) is characteristic of sharing a pair of electrons between two bonding atoms. In the case of the X―H…Y H-bond, Y (typically O or N) supplies its lone pair to the opposite positively charged hydrogen and a H-bond thus in many ways is comparable to a dative bond, albeit with much lower strength. Consequently, the covalence in the H-bond can be similarly measured by the electron transfer from the lone pair to the X―H antibond orbital. Within the MO theory, this kind of nσXH* hyperconjugative interaction can be well illustrated with the perturbation of the lone pair orbital by the anti-bond orbital as

    where both φ(n) and φ(σXH*) are strictly localized orbitals and φ' is a delocalized orbital with a small tail from the X―H antibond orbital. To properly evaluate the magnitude of nσXH* interaction, it is necessary to get optimal localized orbitals. The conventional localization of canonical MOs via unitary transformation results in localized MOs which are not strictly localized on bonds or atoms and possess small tails which reflect both the orthogonalization and delocalization effects. The orthogonalization of MOs within the constraint of one Slater determinant does not change the energy, and only the delocalization tail measures the nσXH* interaction. Edmiston proposed a simple solution to evaluate the nσXH* energy by truncating the tails of LMOs to get the strictly LMOs57. The truncated LMOs (TLMOs) can be subsequently re-orthogonalized and used to compute the molecular energy. Compared with the original energy before the LMO truncation, the molecular energy change from LMOs to TLMOs is the nσXH* electron transfer (or delocalization) energy. In addition, TLMOs result in the third kind of electron density ρTLMO. We have examined the hyperconjugation energy in propene with the TLMO method, and found that the results are quite accurate compared with the BLW data58.

    2.3   Computational details

    Standard B3LYP density functional theory (DFT) calculations with the basis set of 6-311+G(d, p) were performed throughout the work as this level of theory has been assessed for IMHBs and shown comparable with MP2/6-311+G(d, p) results14, 15. Geometries of acetylacetone (AcAc) and o-hydroxyacetophenone (oHAP) were optimized with the GAMESS software68. The optimal localized structure of AcAc where electron pairs are strictly localized on the CC or CO bond or O atom are obtained with the BLW method, which is implemented to the in-house version of GAMESS. For the BLW computation of oHAP, there are six electrons localized on the benzene ring. Vibrational frequencies are computed with a scaling factor of 0.9679 69. The comparison of the geometrical parameters and vibrational frequencies computed with the standard B3LYP and the BLW-DFT methods reveals the impact of the resonance on both the structures and energetics of molecules with resonance-assisted IMHBs.

    The nature of IMHB, which is of -symmetry in AcAc and oHAP, is further investigated with the truncated LMOs. Tails of LMOs of either the carbonyl or hydroxyl functional groups from the other group are truncated to get the TLMOs. This truncation procedure follows the unitary transformation of delocalized MOs to LMOs. All three major localization criteria, including the Boys scheme70, the Edmiston-Ruedenberg (E-R) scheme71 and the Pipek-Mezey (P-M) scheme72, will be adopted for comparison. In addition, the QTAIM method is employed to analyze the topological properties of the electron densities in both delocalized and π localized states. The consequence of the truncation of LMOs in terms of energy and electron density changes will also be probed.

    3   Results and discussion

    3.1   Resonance effect on geometry and energy

    Using the BLW method, we usually derive the most stable resonance (Lewis) structure which can be served as a reference for the evaluation of resonance effect on geometry, energetic and other properties by comparing with the ground state which can be derived with conventional MO or DFT methods at the same theoretical level. In AcAc (1), there are six conjugated electrons and the conjugation effect can be monitored by the variations of the CC and CO bond lengths. Our major results related to the H-bonds are listed in Table 1. Similar to malonaldehyde49, the conjugation remarkably shortens the single bonds of C―C (from 1.551 to 1.445 by 0.106 Å) and C―O (from 1.440 to 1.326 by 0.114 Å) but modestly lengthens both the double bonds of C=C (from 1.322 to 1.370 by 0.048 Å) and C=O (from 1.204 to 1.245 by 0.041 Å). At the DFT optimal geometry, the strict localization of π electrons on double bonds and oxygen atoms increases the molecular energy by 63.0 kcal·mol-1 (1 kcal = 4.1868 kJ) which is defined as the vertical resonance energy (VRE). This is higher than the value in malonaldehyde (51.2 kcal·mol-1). The discrepancy (11.8 kcal·mol-1) reflects the hyperconjugation energy of the two methyl groups in AcAc to the π space. The BLW optimization results in the optimal localized structure whose parameters are comparable to those in non-conjugated systems. For instance, the C―C bond stretches to 1.551 Å, comparable to the bond length in ethane, while the C=C bond shortens to 1.322 Å, identical to the bond length in ethylene. Similarly, the C―O single and C=O double bond lengths are 1.440 Å and 1.204 Å, respectively. These numbers can be justified by the values in methanol and formaldehyde. The energy difference between the optimal delocalized and localized structures corresponds to the adiabatic resonance energy (ARE), which is 48.8 kcal·mol-1 for AcAc, again higher than the value in malonaldehyde (37.7 kcal·mol-1).

    Table 1.  Selected optimal bond distances (Å), νOa-H stretching vibrational frequency (cm-1) and resonance energy (RE, kcal·mol-1) at the B3LYP/6-311+G(d, p) level.
    Mol Method R(Od―H) R(Oa…H) R(Oa…Od) R(C1…C3) νOa-H νC=O VRE ARE
    AcAc DFT 1.003 1.638 2.548 2.448 2979 1622 63.1
    BLW 0.969 1.975 2.796 2.544 3610 1770 48.8
    oHAP DFT 0.988 1.688 2.572 2.503 3227a) 1627b) 46.6
    BLW 0.967 1.904 2.735 2.58 37.3
    a Compared with 3600 cm-1 in phenol; bCompared with 1700 cm-1 in benzaldehyde. 1 kcal = 4.1868 kJ

    The structural and energetic changes for oHAP are much like the case of AcAc, but the magnitudes are reduced slightly. For instances, the conjugation shortens the single bonds of C―C and C―O by 0.091 (from 1.564 to 1.473) and 0.102 Å (from 1.442 to 1.340) and lengthens the double bonds of C=C and C=O by 0.027 and 0.032 Å, respectively. Accordingly, both the VRE and ARE are 46.6 and 37.3 kcal·mol-1, respectively, and higher than the corresponding values in o-hydroxybenzaldehyde (41.8 and 32.9 kcal·mol-1, respectively). The differences, which are 40% of the gaps between AcAc and malonaldehyde, again reflect the hyperconjugation energy of the methyl group in oHAP to the π space. We also note the resonance energies (VRE and ARE) in oHAP are even lower than those in AcAc or malonaldehyde, and apparently due to the π pair on the C1=C2 bond which prefers to participate the resonance within the benzene ring and achieve the largest stability (aromaticity). This can be verified by the optimal C1=C2 bond distance (1.395 Å) in the BLW optimal geometry, which is close to the bond distance in benzene much more than in ethylene.

    Apart from the expected changes as discussed in above, the localization of π electrons obviously weakens the IMHB in both systems. Experimentally it has been suggested that the strength of a H-bond (X―H…Y) is associated with the H-bond distances including X…Y and H…Y73, 74. For the present cases of AcAc and oHAP, the O―H bond shortens by 0.034 and 0.021 Å, while the Oa…Od notably increases by 0.25 and 0.16 Å, respectively. These changes are in accord with the red-shifting of the stretching vibrational frequency of the O―H bond (by 633 and 338 cm-1, respectively). The comparison of the data for AcAc and oHAP in Table 1 also indicates that the IMHB in oHAP is somewhat weaker than the H-bond in AcAc, as suggested by the H-bond lengths and vibrational frequencies. All these results seemingly provide very strong proofs for the proposal of resonance-assisted H-bond and differ from the criticism by Yáñez and coworkers that RAHBs result from the constraints imposed by the σ-skeleton framework14-17.

    The impact of π conjugation can also be visualized by plotting the electron density difference map (EDD) between DFT and BLW densities at the DFT optimal geometries, as shown in Fig. 2 where the orange/cyan surface represents an increase/decrease in electron density. In both cases, we observe the movement of the π electrons away from the hydroxyl oxygen to the carbonyl oxygen through the CC double bond. Significantly, there is electron density depletion from the hydrogen atom which can be verified by population analyses. Thus, π electron resonance does reduce the hydrogen population and makes the hydrogen carry more positive charge.

    图2 Electron density difference (EDD) isosurface maps showing the movement of electron density due to π conjugation in (a) AcAc and (b) oHAP. Figure2. Electron density difference (EDD) isosurface maps showing the movement of electron density due to π conjugation in (a) AcAc and (b) oHAP.

    3.2   Strength of intramolecular RAHB

    As there is no clear-cut definition for the energy of IMHBs, different approaches with various assumptions and approximations have been proposed. Notably, Woodford examined the H-bond energies in MA and its substituted derivatives with five different approaches, and found significant differences among these estimates. For instance, the IMHB energy in malonaldehyde ranges from 9.8 to 15.8 kcal·mol-1 39.

    We computed the most important index for the covalence of H-bonds, namely the electron transfer energy between the hydroxyl and carbonyl groups using the truncation approach.57 For comparison, we also examined the energy change by flipping the ―OH group by 180°. Table 2 lists the results for AcAc and oHAP. It is notable that all three localization criteria result in very close values, though the Pipek-Mezey scheme based on the maximization of Mulliken populations gives slightly low numbers which will be used in the following discussion. Among the three localization schemes, the Pipek-Mezey scheme is the most effective one in differentiating σ and π MOs. This is important as the H-bond is of σ-symmetry and thus only σ-tails need be truncated, though the role of π tails should be negligible and in the present study both σ and π interactions are considered. For AcAc, the electron transfer, which is mainly the nσXH* hyperconjugative interaction but also composed of other trivial contributions, stabilizes the molecule by 14.6 kcal·mol-1, implying considerable covalent nature of the IMHB. For comparison, in the formic acid dimer which involves two intermolecular H-bonds, the optimal H-bond length R(O…O) is 2.701 Å, and the intermolecular interaction energy decomposition based on the BLW method (BLW-ED75, 76) estimates the electron transfer stabilization energy for each H-bond as 5.3 kcal·mol-1, compared with the overall H-bond energy 8.3 kcal·mol-1 if the deformation energy cost is not considered18.

    Table 2.  H-bonding strengths (kcal·mol-1) estimated with the truncated LMO's based on various localization schemes.
    Molecule Method Boys E-R P-K Flip OH
    AcAc DFT 15.4 15 14.6 11
    BLW 10.8 10.8 10.9 6.5
    oHAP DFT 13 13.1 12.2 15.8
    BLW 10.8 10.5 10.1 8.9

    However, the H-bond energy also concerns the repulsive Pauli exchange energy and the stabilizing electrostatic and polarization energies. This partly explains why the TLMO stabilization energies are lower than the energy variation by flipping the hydroxyl group out of the bonding area (11.0 kcal·mol-1 for AcAc). The Pauli repulsion energy increases exponentially with the shortening of the H-bond length. The large electron transfer energy derived from TLMOs hardly offsets the fast increasing Pauli repulsion. Once the resonance is deactivated, we see the immediate lengthening of the H-bond (Table 1), and accordingly, there is a reduction of the electron transfer energy. There is an obvious correlation between the TLMO energy values and the H-bonding distances. However, we found that the H-bonding in oHAP is stronger than in AcAc if we estimate the H-bond strength by flipping the involved hydroxyl group, and this seems counterintuitive.

    Previous study with a series of resonance-assisted H-bonding systems including malonaldehyde showed that there is little change on the topological properties of electron densities at hydrogen bond critical points (HBCPs) when the resonance is shut down49. This raises a serious question whether QTAIM topological parameters can be a measure of H-bonding strength, though there are claims that the electron density at HBCPs is a good descriptor as it correlates well with hydrogen bond strengths77-79. Popelier et al. even suggested that the typical topological parameters at HBCPs are 0.002-0.04 a.u. for the electron density (ρ) and 0.02-0.15 au for its Laplacian (∇2ρ).80, 81 Here we similarly compare the QTAIM topological parameters with the resonance turned on and off (Table 3). By retaining the same geometry, we again observe little changes between DFT and BLW densities. According to the concept of RAHB, the deactivation of the resonance would significantly weaken the H-bonding strength. Yet, we found that the topological parameters at HBCPs are dependent on the H-bond distance rather than the H-bond strength. In other words, the topological parameters will vary monotonously along with the H-bond distance, while the H-bonding strength would behave along a Morse curve like any interactions.

    Table 3.  The density and Laplacian of density at the BCP (in a.u.) with the DFT/6-311+G(d, p) geometries.
    Molecule Method HBCP (R1) R1/R(Oa…H) ρ 2r
    AcAc DFT 1.133 0.692 0.049 0.133
    BLW 1.123 0.686 0.048 0.145
    oHAP DFT 1.166 0.66 0.041 0.124
    BLW 1.159 0.656 0.04 0.131

    4   Conclusions

    In this work, we employed the BLW method and the TLMO technique to study the impact of resonance on the structures and intramolecular hydrogen bonding in acetylacetone and o-hydroxyacetophenone which are exemplary for the concept of resonance-assisted hydrogen bond (RAHB). RAHB is characteristic of the cooperativity between the π-electron delocalization and H-bonding interactions. Computational results show that the π resonance significantly changes the molecular structures and shorten the IMHBs. Accordingly, remarkable red-shifting of the O―H stretching vibrational frequency is also verified, and the magnitude in acetylacetone is higher than in o-hydroxybenzaldehyde, suggesting the stronger bonding in the former. This is supported by the TLMO results, which show the significant covalence in IMHBs.

    1. [1]

      Scheiner, S. Hydrogen Bonding: A Theoretical Perspective; Oxford University Press: New York, 1997.

    2. [2]

      Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, 1997.

    3. [3]

      Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond In Structural Chemistry and Biology; Oxford University Press: New York, 2001.

    4. [4]

      Hydrogen Bonding -New Insights; Grabowski, S. J., Ed. ; Springer: Berlin, 2006; Vol. 3.

    5. [5]

      Gilli, G.; Gilli, P. The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory; Oxford University Press: New York, 2009; Vol.23.

    6. [6]

      Supramolecular Assembly via Hydrogen Bonds; Mingos, D. M. P. Ed. ; Springer: Berlin, 2010; Vol. 108.

    7. [7]

      Gilli, G.; Bellucci, F.; Ferretti, V.; Bertolasi, V. J. Am. Chem. Soc. 1989, 111, 1023. doi: 10.1021/ja00185a035  doi: 10.1021/ja00185a035

    8. [8]

      Bertolasi, V.; Gilli, P.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 1991, 113, 4917. doi: 10.1021/ja00013a030  doi: 10.1021/ja00013a030

    9. [9]

      Gilli, P.; Bertolasi, V.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 2000, 122, 10405. doi: 10.1021/ja000921+  doi: 10.1021/ja000921+

    10. [10]

      Gilli, P.; Bertolasi, V.; Pretto, L.; Lyčka, A.; Gilli, G. J. Am. Chem. Soc. 2002, 124, 13554. doi: 10.1021/ja020589x  doi: 10.1021/ja020589x

    11. [11]

      Gilli, P.; Bertolasi, V.; Pretto, L.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 2004, 126, 3845. doi: 10.1021/ja030213z  doi: 10.1021/ja030213z

    12. [12]

      Srinivasan, R.; Feenstra, J. S.; Park, S. T.; Xu, S.; Zewail, A. H. J. Am. Chem. Soc. 2004, 126, 2266. doi: 10.1021/ja031927c  doi: 10.1021/ja031927c

    13. [13]

      Sobczyk, L.; Grabowski, S. J.; Krygowski, T. M. Chem. Rev. 2005, 105, 3513. doi: 10.1002/chin.200603277  doi: 10.1002/chin.200603277

    14. [14]

      Sanz, P.; Mó, O.; Yáñez, M.; Elguero, J. J. Phys. Chem. A 2007, 111, 3585. doi: 10.1021/jp067514q  doi: 10.1021/jp067514q

    15. [15]

      Sanz, P.; Mó, O.; Yáñez, M.; Elguero, J. Chem. Eur. J. 2008, 14, 4225. doi: 10.1002/chem.200701827  doi: 10.1002/chem.200701827

    16. [16]

      Alkorta, I.; Elguero, J.; Mó, O.; Yáñez, M.; Del Bene, J. E. Mol. Phys. 2004, 102, 2563. doi: 10.1080/00268970412331292885  doi: 10.1080/00268970412331292885

    17. [17]

      Alkorta, I.; Elguero, J.; Mó, O.; Yáñez, M.; Del Bene, J. E. Chem. Phys. Lett. 2005, 411, 411. doi: 10.1016/j.cplett.2005.06.061  doi: 10.1016/j.cplett.2005.06.061

    18. [18]

      Beck, J. F.; Mo, Y. J. Comput. Chem. 2007, 28, 455. doi: 10.1002/jcc.20523  doi: 10.1002/jcc.20523

    19. [19]

      Grabowski, S. J. J. Phys. Org. Chem. 2003, 16, 797. doi: 10.1002/poc.675  doi: 10.1002/poc.675

    20. [20]

      Grabowski, S. J. J. Mol. Struct. 2001, 562, 137. doi: 10.1016/S0022-2860(00)00863-2  doi: 10.1016/S0022-2860(00)00863-2

    21. [21]

      Grabowski, S. J. J. Phys. Chem. A 2001, 105, 10739. doi: 10.1021/jp011819h  doi: 10.1021/jp011819h

    22. [22]

      Grabowski, S. J. J. Phys. Org. Chem. 2004, 17, 18. doi: 10.1002/poc.685  doi: 10.1002/poc.685

    23. [23]

      Wang, C. S.; Zhang, Y.; Gao, K.; Yang, Z. Z. J. Chem. Phys. 2005, 123, 024307. doi: 10.1063/1.1979471  doi: 10.1063/1.1979471

    24. [24]

      Jablonski, M.; Kaczmarek, A.; Sadlej, A. J. J. Phys. Chem. A 2006, 110, 10890. doi: 10.1021/jp062759o  doi: 10.1021/jp062759o

    25. [25]

      Liu, T.; Li, H.; Huang, M. B.; Duan, Y.; Wang, Z. X. J. Phys. Chem. A 2008, 112, 5436. doi: 10.1021/jp712052e  doi: 10.1021/jp712052e

    26. [26]

      Deshmukh, M. M.; Gadre, S. R. J. Phys. Chem. A 2009, 113, 7927. doi: 10.1021/jp9031207  doi: 10.1021/jp9031207

    27. [27]

      Gilli, P.; Pretto, L.; Bertolasi, V.; Gilli, G. Acc. Chem. Res. 2009, 42, 33. doi: 10.1021/ar800001k  doi: 10.1021/ar800001k

    28. [28]

      Wendler, K.; Thar, J.; Zahn, S.; Kirchner, B. J. Phys. Chem. A 2010, 114, 9529. doi: 10.1021/jp103470e  doi: 10.1021/jp103470e

    29. [29]

      Valence Bond Theory; Cooper, D. L. Ed. ; Elsevier: Amsterdam, 2002.

    30. [30]

      Gallup, G. A. Valence Bond Methods: Theory and Applications; Cambridge University Press: New York, 2002.

    31. [31]

      Shaik, S. S. ; Hiberty, P. C. A Chemist's Guide to Valence Bond Theory; Wiley: Hoboken, New Jersey, 2008.

    32. [32]

      Wu, W.; Su, P.; Shaik, S.; Hiberty, P. C. Chem. Rev. 2011, 111, 7557. doi: 10.1021/cr100228r  doi: 10.1021/cr100228r

    33. [33]

      Mo, Y.; Peyerimhoff, S. D. J. Chem. Phys. 1998, 109, 1687. doi: 10.1063/1.476742  doi: 10.1063/1.476742

    34. [34]

      Mo, Y.; Song, L.; Lin, Y. J. Phys. Chem. A 2007, 111, 8291. doi: 10.1021/jp0724065  doi: 10.1021/jp0724065

    35. [35]

      Mo, Y. In The Chemical Bond: Fundamental Aspects of Chemical Bonding; Frenking, G., Shaik, S., Eds. ; Wiley-VCH: Weinheim, Germany, 2014, p 199. doi: 10.1002/9783527664696.ch6

    36. [36]

      Rozas, I. Phys. Chem. Chem. Phys. 2007, 9, 2782. doi: 10.1039/B618225A  doi: 10.1039/B618225A

    37. [37]

      Estácio, S. G.; Cabral do Couto, P.; Costa Cabral, B. J.; Minas da Piedade, M. E.; Martinho Sim es, J. A. J. Phys. Chem. A 2004, 108, 10834. doi: 10.1021/jp0473422  doi: 10.1021/jp0473422

    38. [38]

      Lipkowskia, P.; Kolla, A.; Karpfenb, A.; Wolschannb, P. Chem. Phys. Lett. 2002, 360, 256. doi: 10.1016/S0009-2614(02)00830-8  doi: 10.1016/S0009-2614(02)00830-8

    39. [39]

      Woodford, J. N. J. Phys. Chem. A 2007, 111, 8519. doi: 10.1021/jp073098d  doi: 10.1021/jp073098d

    40. [40]

      Latajka, Z.; Scheiner, S. J. Phys. Chem. 1994, 96, 9764. doi: 10.1021/j100203a035  doi: 10.1021/j100203a035

    41. [41]

      Scheiner, S.; Kar, T.; Čuma, M. J. Phys. Chem. A 1997, 101, 5901. doi: 10.1021/jp9713874  doi: 10.1021/jp9713874

    42. [42]

      González, L.; Mó, O.; Yáñez, M. J. Phys. Chem. A 1997, 101, 9710. doi: 10.1021/ jp970735z  doi: 10.1021/jp970735z

    43. [43]

      Zhang, Y.; Wang, C. S. J. Comput. Chem. 2009, 30, 1251. doi: 10.1002/jcc.21141  doi: 10.1002/jcc.21141

    44. [44]

      Rozas, I.; Alkorta, I.; Elguero, J. J. Phys. Chem. A 2001, 105, 10462. doi: 10.1021/jp013125e  doi: 10.1021/jp013125e

    45. [45]

      Deshmukh, M. M.; Gadre, S. R.; Bartolotti, L. J. J. Phys. Chem. A 2006, 110, 12519. doi: 10.1021/jp065836o  doi: 10.1021/jp065836o

    46. [46]

      Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, U. K., 1990.

    47. [47]

      Pacios, L. F. J. Phys. Chem. A 2004, 108, 1177. doi: 10.1021/jp030978t  doi: 10.1021/jp030978t

    48. [48]

      LaPointe, S. M.; Farrag, S.; Bohrquez, H. J.; Boyd, R. J. J. Phys. Chem. B 2009, 113, 10957. doi: 10.1021/jp903635h  doi: 10.1021/jp903635h

    49. [49]

      Mo, Y. J. Phys. Chem. A 2012, 116, 5240. doi: 10.1021/jp3029769  doi: 10.1021/jp3029769

    50. [50]

      Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899. doi: 10.1021/cr00088a005  doi: 10.1021/cr00088a005

    51. [51]

      Weinhold, F.; Landis, C. Valency and Bonding; Cambridge University Press: Cambridge, England, 2005.

    52. [52]

      Pophristic, V.; Goodman, L. Nature 2001, 411, 565. doi: 10.1038/35079036  doi: 10.1038/35079036

    53. [53]

      Bickelhaupt, F. M.; Baerends, E. J. Angew. Chem. Int. Ed. 2003, 42, 4183. doi: 10.1002/anie.200350947  doi: 10.1002/anie.200350947

    54. [54]

      Weinhold, F. Angew. Chem. Int. Ed. 2003, 42, 4188. doi: 10.1002/anie.200351777  doi: 10.1002/anie.200351777

    55. [55]

      Mo, Y.; Gao, J. Acc. Chem. Res. 2007, 40, 113. doi: 10.1021/ar068073w  doi: 10.1021/ar068073w

    56. [56]

      Mo, Y.; Wu, W.; Song, L.; Lin, M.; Zhang, Q.; Gao, J. Angew. Chem. Int. Ed. 2004, 43, 1986. doi: 10.1002/anie.200352931  doi: 10.1002/anie.200352931

    57. [57]

      Edmiston, C. Theochem 1988, 46, 331. doi: 10.1016/0166-1280(88)80267-7  doi: 10.1016/0166-1280(88)80267-7

    58. [58]

      Mo, Y.; Zhang, Q. J. Mol. Struct.(Theochem) 1995, 357, 171. doi: 10.1016/0166-1280(95)04274-A  doi: 10.1016/0166-1280(95)04274-A

    59. [59]

      Song, L.; Mo, Y.; Zhang, Q.; Wu, W. J. Comput. Chem. 2005, 26, 514. doi: 10.1002/jcc.20187  doi: 10.1002/jcc.20187

    60. [60]

      Song, L. ; Chen, Z. ; Ying, F. ; Song, J. ; Chen, X. ; Su, P. ; Mo, Y. ; Zhang, Q. ; Wu, W. XMVB 2. 0: An ab initio Non-orthogonal Valence Bond Program; Xiamen University: Xiamen, 2012.

    61. [61]

      Mulliken, R. S.; Parr, R. G. J. Chem. Phys. 1951, 19, 1271. doi: 10.1063/1.1748011  doi: 10.1063/1.1748011

    62. [62]

      Sovers, O. J.; Kern, C. W.; Pitzer, R. M.; Karplus, M. J. Chem. Phys. 1968, 49, 2592. doi: 10.1063/1.1681576  doi: 10.1063/1.1681576

    63. [63]

      Stoll, H.; Preuss, H. Theor. Chim. Acta 1977, 46, 11. doi: 10.1007/BF02401407  doi: 10.1007/BF02401407

    64. [64]

      Kollmar, H. J. Am. Chem. Soc. 1979, 101, 4832. doi: 10.1021/ja00511a009  doi: 10.1021/ja00511a009

    65. [65]

      Mehler, E. L. J. Chem. Phys. 1977, 67, 2728. doi: 10.1063/1.435187  doi: 10.1063/1.435187

    66. [66]

      Gianinetti, E.; Raimondi; Tornaghi, E. Int. J. Quantum Chem. 1996, 60, 157. doi: 10.1002/(SICI)1097-461X(1996)60:1<157::AID-QUA17>3.0.CO;2-C  doi: 10.1002/(SICI)1097-461X(1996)60:1<157::AID-QUA17>3.0.CO;2-C

    67. [67]

      Mo, Y. J. Chem. Phys. 2003, 119, 1300. doi: 10.1063/1.1580094  doi: 10.1063/1.1580094

    68. [68]

      Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. J.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347. doi: 10.1002/jcc.540141112  doi: 10.1002/jcc.540141112

    69. [69]

      Andersson, M. P.; Uvdal, P. J. Phys. Chem. A 2005, 109, 2937. doi: 10.1021/jp045733a  doi: 10.1021/jp045733a

    70. [70]

      Boys, S. F. Rev. Mod. Phys. 1960, 32, 296. doi: 10.1103/RevModPhys.32.296  doi: 10.1103/RevModPhys.32.296

    71. [71]

      Edmiston, C.; Ruedenberg, K. Rev. Mod. Phys. 1963, 35, 457. doi: 10.1103/RevModPhys.35.457  doi: 10.1103/RevModPhys.35.457

    72. [72]

      Pipek, J.; Mezey, P. G. J. Chem. Phys. 1989, 90, 4916. doi: 10.1063/1.456588  doi: 10.1063/1.456588

    73. [73]

      Ichikawa, M. Acta Cryst. 1978, B34, 2074. doi: 10.1107/S0567740878007475  doi: 10.1107/S0567740878007475

    74. [74]

      Steiner, T.; Saenger, W. Acta Cryst. 1994, B50, 348. doi: 10.1107/S0108768193011966  doi: 10.1107/S0108768193011966

    75. [75]

      Mo, Y.; Gao, J.; Peyerimhoff, S. D. J. Chem. Phys. 2000, 112, 5530. doi: 10.1063/1.481185  doi: 10.1063/1.481185

    76. [76]

      Mo, Y.; Bao, P.; Gao, J. Phys. Chem. Chem. Phys. 2011, 13, 6760. doi: 10.1039/c0cp02206c  doi: 10.1039/c0cp02206c

    77. [77]

      Mó, O.; Yánez, M.; Elguero, J. J. Chem. Phys. 1992, 97, 6628. doi: 10.1063/1.463666  doi: 10.1063/1.463666

    78. [78]

      Espinosa, E.; Molins, E.; Lecomte, C. Chem. Phys. Lett. 1998, 285, 170. doi: 10.1016/S0009-2614(98)00036-0  doi: 10.1016/S0009-2614(98)00036-0

    79. [79]

      Espinosa, E.; Molins, E. J. Chem. Phys. 2000, 113, 5686. doi: 10.1063/1.1290612  doi: 10.1063/1.1290612

    80. [80]

      Koch, U.; Popelier, P. L. A. J. Phys. Chem. A 1995, 99, 9747. doi: 10.1021/j100024a016  doi: 10.1021/j100024a016

    81. [81]

      Popelier, P. L. A. J. Phys. Chem. A 1998, 102, 1873. doi: 10.1021/jp9805048  doi: 10.1021/jp9805048

    1. [1]

      Scheiner, S. Hydrogen Bonding: A Theoretical Perspective; Oxford University Press: New York, 1997.

    2. [2]

      Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, 1997.

    3. [3]

      Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond In Structural Chemistry and Biology; Oxford University Press: New York, 2001.

    4. [4]

      Hydrogen Bonding -New Insights; Grabowski, S. J., Ed. ; Springer: Berlin, 2006; Vol. 3.

    5. [5]

      Gilli, G.; Gilli, P. The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory; Oxford University Press: New York, 2009; Vol.23.

    6. [6]

      Supramolecular Assembly via Hydrogen Bonds; Mingos, D. M. P. Ed. ; Springer: Berlin, 2010; Vol. 108.

    7. [7]

      Gilli, G.; Bellucci, F.; Ferretti, V.; Bertolasi, V. J. Am. Chem. Soc. 1989, 111, 1023. doi: 10.1021/ja00185a035  doi: 10.1021/ja00185a035

    8. [8]

      Bertolasi, V.; Gilli, P.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 1991, 113, 4917. doi: 10.1021/ja00013a030  doi: 10.1021/ja00013a030

    9. [9]

      Gilli, P.; Bertolasi, V.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 2000, 122, 10405. doi: 10.1021/ja000921+  doi: 10.1021/ja000921+

    10. [10]

      Gilli, P.; Bertolasi, V.; Pretto, L.; Lyčka, A.; Gilli, G. J. Am. Chem. Soc. 2002, 124, 13554. doi: 10.1021/ja020589x  doi: 10.1021/ja020589x

    11. [11]

      Gilli, P.; Bertolasi, V.; Pretto, L.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 2004, 126, 3845. doi: 10.1021/ja030213z  doi: 10.1021/ja030213z

    12. [12]

      Srinivasan, R.; Feenstra, J. S.; Park, S. T.; Xu, S.; Zewail, A. H. J. Am. Chem. Soc. 2004, 126, 2266. doi: 10.1021/ja031927c  doi: 10.1021/ja031927c

    13. [13]

      Sobczyk, L.; Grabowski, S. J.; Krygowski, T. M. Chem. Rev. 2005, 105, 3513. doi: 10.1002/chin.200603277  doi: 10.1002/chin.200603277

    14. [14]

      Sanz, P.; Mó, O.; Yáñez, M.; Elguero, J. J. Phys. Chem. A 2007, 111, 3585. doi: 10.1021/jp067514q  doi: 10.1021/jp067514q

    15. [15]

      Sanz, P.; Mó, O.; Yáñez, M.; Elguero, J. Chem. Eur. J. 2008, 14, 4225. doi: 10.1002/chem.200701827  doi: 10.1002/chem.200701827

    16. [16]

      Alkorta, I.; Elguero, J.; Mó, O.; Yáñez, M.; Del Bene, J. E. Mol. Phys. 2004, 102, 2563. doi: 10.1080/00268970412331292885  doi: 10.1080/00268970412331292885

    17. [17]

      Alkorta, I.; Elguero, J.; Mó, O.; Yáñez, M.; Del Bene, J. E. Chem. Phys. Lett. 2005, 411, 411. doi: 10.1016/j.cplett.2005.06.061  doi: 10.1016/j.cplett.2005.06.061

    18. [18]

      Beck, J. F.; Mo, Y. J. Comput. Chem. 2007, 28, 455. doi: 10.1002/jcc.20523  doi: 10.1002/jcc.20523

    19. [19]

      Grabowski, S. J. J. Phys. Org. Chem. 2003, 16, 797. doi: 10.1002/poc.675  doi: 10.1002/poc.675

    20. [20]

      Grabowski, S. J. J. Mol. Struct. 2001, 562, 137. doi: 10.1016/S0022-2860(00)00863-2  doi: 10.1016/S0022-2860(00)00863-2

    21. [21]

      Grabowski, S. J. J. Phys. Chem. A 2001, 105, 10739. doi: 10.1021/jp011819h  doi: 10.1021/jp011819h

    22. [22]

      Grabowski, S. J. J. Phys. Org. Chem. 2004, 17, 18. doi: 10.1002/poc.685  doi: 10.1002/poc.685

    23. [23]

      Wang, C. S.; Zhang, Y.; Gao, K.; Yang, Z. Z. J. Chem. Phys. 2005, 123, 024307. doi: 10.1063/1.1979471  doi: 10.1063/1.1979471

    24. [24]

      Jablonski, M.; Kaczmarek, A.; Sadlej, A. J. J. Phys. Chem. A 2006, 110, 10890. doi: 10.1021/jp062759o  doi: 10.1021/jp062759o

    25. [25]

      Liu, T.; Li, H.; Huang, M. B.; Duan, Y.; Wang, Z. X. J. Phys. Chem. A 2008, 112, 5436. doi: 10.1021/jp712052e  doi: 10.1021/jp712052e

    26. [26]

      Deshmukh, M. M.; Gadre, S. R. J. Phys. Chem. A 2009, 113, 7927. doi: 10.1021/jp9031207  doi: 10.1021/jp9031207

    27. [27]

      Gilli, P.; Pretto, L.; Bertolasi, V.; Gilli, G. Acc. Chem. Res. 2009, 42, 33. doi: 10.1021/ar800001k  doi: 10.1021/ar800001k

    28. [28]

      Wendler, K.; Thar, J.; Zahn, S.; Kirchner, B. J. Phys. Chem. A 2010, 114, 9529. doi: 10.1021/jp103470e  doi: 10.1021/jp103470e

    29. [29]

      Valence Bond Theory; Cooper, D. L. Ed. ; Elsevier: Amsterdam, 2002.

    30. [30]

      Gallup, G. A. Valence Bond Methods: Theory and Applications; Cambridge University Press: New York, 2002.

    31. [31]

      Shaik, S. S. ; Hiberty, P. C. A Chemist's Guide to Valence Bond Theory; Wiley: Hoboken, New Jersey, 2008.

    32. [32]

      Wu, W.; Su, P.; Shaik, S.; Hiberty, P. C. Chem. Rev. 2011, 111, 7557. doi: 10.1021/cr100228r  doi: 10.1021/cr100228r

    33. [33]

      Mo, Y.; Peyerimhoff, S. D. J. Chem. Phys. 1998, 109, 1687. doi: 10.1063/1.476742  doi: 10.1063/1.476742

    34. [34]

      Mo, Y.; Song, L.; Lin, Y. J. Phys. Chem. A 2007, 111, 8291. doi: 10.1021/jp0724065  doi: 10.1021/jp0724065

    35. [35]

      Mo, Y. In The Chemical Bond: Fundamental Aspects of Chemical Bonding; Frenking, G., Shaik, S., Eds. ; Wiley-VCH: Weinheim, Germany, 2014, p 199. doi: 10.1002/9783527664696.ch6

    36. [36]

      Rozas, I. Phys. Chem. Chem. Phys. 2007, 9, 2782. doi: 10.1039/B618225A  doi: 10.1039/B618225A

    37. [37]

      Estácio, S. G.; Cabral do Couto, P.; Costa Cabral, B. J.; Minas da Piedade, M. E.; Martinho Sim es, J. A. J. Phys. Chem. A 2004, 108, 10834. doi: 10.1021/jp0473422  doi: 10.1021/jp0473422

    38. [38]

      Lipkowskia, P.; Kolla, A.; Karpfenb, A.; Wolschannb, P. Chem. Phys. Lett. 2002, 360, 256. doi: 10.1016/S0009-2614(02)00830-8  doi: 10.1016/S0009-2614(02)00830-8

    39. [39]

      Woodford, J. N. J. Phys. Chem. A 2007, 111, 8519. doi: 10.1021/jp073098d  doi: 10.1021/jp073098d

    40. [40]

      Latajka, Z.; Scheiner, S. J. Phys. Chem. 1994, 96, 9764. doi: 10.1021/j100203a035  doi: 10.1021/j100203a035

    41. [41]

      Scheiner, S.; Kar, T.; Čuma, M. J. Phys. Chem. A 1997, 101, 5901. doi: 10.1021/jp9713874  doi: 10.1021/jp9713874

    42. [42]

      González, L.; Mó, O.; Yáñez, M. J. Phys. Chem. A 1997, 101, 9710. doi: 10.1021/ jp970735z  doi: 10.1021/jp970735z

    43. [43]

      Zhang, Y.; Wang, C. S. J. Comput. Chem. 2009, 30, 1251. doi: 10.1002/jcc.21141  doi: 10.1002/jcc.21141

    44. [44]

      Rozas, I.; Alkorta, I.; Elguero, J. J. Phys. Chem. A 2001, 105, 10462. doi: 10.1021/jp013125e  doi: 10.1021/jp013125e

    45. [45]

      Deshmukh, M. M.; Gadre, S. R.; Bartolotti, L. J. J. Phys. Chem. A 2006, 110, 12519. doi: 10.1021/jp065836o  doi: 10.1021/jp065836o

    46. [46]

      Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, U. K., 1990.

    47. [47]

      Pacios, L. F. J. Phys. Chem. A 2004, 108, 1177. doi: 10.1021/jp030978t  doi: 10.1021/jp030978t

    48. [48]

      LaPointe, S. M.; Farrag, S.; Bohrquez, H. J.; Boyd, R. J. J. Phys. Chem. B 2009, 113, 10957. doi: 10.1021/jp903635h  doi: 10.1021/jp903635h

    49. [49]

      Mo, Y. J. Phys. Chem. A 2012, 116, 5240. doi: 10.1021/jp3029769  doi: 10.1021/jp3029769

    50. [50]

      Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899. doi: 10.1021/cr00088a005  doi: 10.1021/cr00088a005

    51. [51]

      Weinhold, F.; Landis, C. Valency and Bonding; Cambridge University Press: Cambridge, England, 2005.

    52. [52]

      Pophristic, V.; Goodman, L. Nature 2001, 411, 565. doi: 10.1038/35079036  doi: 10.1038/35079036

    53. [53]

      Bickelhaupt, F. M.; Baerends, E. J. Angew. Chem. Int. Ed. 2003, 42, 4183. doi: 10.1002/anie.200350947  doi: 10.1002/anie.200350947

    54. [54]

      Weinhold, F. Angew. Chem. Int. Ed. 2003, 42, 4188. doi: 10.1002/anie.200351777  doi: 10.1002/anie.200351777

    55. [55]

      Mo, Y.; Gao, J. Acc. Chem. Res. 2007, 40, 113. doi: 10.1021/ar068073w  doi: 10.1021/ar068073w

    56. [56]

      Mo, Y.; Wu, W.; Song, L.; Lin, M.; Zhang, Q.; Gao, J. Angew. Chem. Int. Ed. 2004, 43, 1986. doi: 10.1002/anie.200352931  doi: 10.1002/anie.200352931

    57. [57]

      Edmiston, C. Theochem 1988, 46, 331. doi: 10.1016/0166-1280(88)80267-7  doi: 10.1016/0166-1280(88)80267-7

    58. [58]

      Mo, Y.; Zhang, Q. J. Mol. Struct.(Theochem) 1995, 357, 171. doi: 10.1016/0166-1280(95)04274-A  doi: 10.1016/0166-1280(95)04274-A

    59. [59]

      Song, L.; Mo, Y.; Zhang, Q.; Wu, W. J. Comput. Chem. 2005, 26, 514. doi: 10.1002/jcc.20187  doi: 10.1002/jcc.20187

    60. [60]

      Song, L. ; Chen, Z. ; Ying, F. ; Song, J. ; Chen, X. ; Su, P. ; Mo, Y. ; Zhang, Q. ; Wu, W. XMVB 2. 0: An ab initio Non-orthogonal Valence Bond Program; Xiamen University: Xiamen, 2012.

    61. [61]

      Mulliken, R. S.; Parr, R. G. J. Chem. Phys. 1951, 19, 1271. doi: 10.1063/1.1748011  doi: 10.1063/1.1748011

    62. [62]

      Sovers, O. J.; Kern, C. W.; Pitzer, R. M.; Karplus, M. J. Chem. Phys. 1968, 49, 2592. doi: 10.1063/1.1681576  doi: 10.1063/1.1681576

    63. [63]

      Stoll, H.; Preuss, H. Theor. Chim. Acta 1977, 46, 11. doi: 10.1007/BF02401407  doi: 10.1007/BF02401407

    64. [64]

      Kollmar, H. J. Am. Chem. Soc. 1979, 101, 4832. doi: 10.1021/ja00511a009  doi: 10.1021/ja00511a009

    65. [65]

      Mehler, E. L. J. Chem. Phys. 1977, 67, 2728. doi: 10.1063/1.435187  doi: 10.1063/1.435187

    66. [66]

      Gianinetti, E.; Raimondi; Tornaghi, E. Int. J. Quantum Chem. 1996, 60, 157. doi: 10.1002/(SICI)1097-461X(1996)60:1<157::AID-QUA17>3.0.CO;2-C  doi: 10.1002/(SICI)1097-461X(1996)60:1<157::AID-QUA17>3.0.CO;2-C

    67. [67]

      Mo, Y. J. Chem. Phys. 2003, 119, 1300. doi: 10.1063/1.1580094  doi: 10.1063/1.1580094

    68. [68]

      Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. J.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347. doi: 10.1002/jcc.540141112  doi: 10.1002/jcc.540141112

    69. [69]

      Andersson, M. P.; Uvdal, P. J. Phys. Chem. A 2005, 109, 2937. doi: 10.1021/jp045733a  doi: 10.1021/jp045733a

    70. [70]

      Boys, S. F. Rev. Mod. Phys. 1960, 32, 296. doi: 10.1103/RevModPhys.32.296  doi: 10.1103/RevModPhys.32.296

    71. [71]

      Edmiston, C.; Ruedenberg, K. Rev. Mod. Phys. 1963, 35, 457. doi: 10.1103/RevModPhys.35.457  doi: 10.1103/RevModPhys.35.457

    72. [72]

      Pipek, J.; Mezey, P. G. J. Chem. Phys. 1989, 90, 4916. doi: 10.1063/1.456588  doi: 10.1063/1.456588

    73. [73]

      Ichikawa, M. Acta Cryst. 1978, B34, 2074. doi: 10.1107/S0567740878007475  doi: 10.1107/S0567740878007475

    74. [74]

      Steiner, T.; Saenger, W. Acta Cryst. 1994, B50, 348. doi: 10.1107/S0108768193011966  doi: 10.1107/S0108768193011966

    75. [75]

      Mo, Y.; Gao, J.; Peyerimhoff, S. D. J. Chem. Phys. 2000, 112, 5530. doi: 10.1063/1.481185  doi: 10.1063/1.481185

    76. [76]

      Mo, Y.; Bao, P.; Gao, J. Phys. Chem. Chem. Phys. 2011, 13, 6760. doi: 10.1039/c0cp02206c  doi: 10.1039/c0cp02206c

    77. [77]

      Mó, O.; Yánez, M.; Elguero, J. J. Chem. Phys. 1992, 97, 6628. doi: 10.1063/1.463666  doi: 10.1063/1.463666

    78. [78]

      Espinosa, E.; Molins, E.; Lecomte, C. Chem. Phys. Lett. 1998, 285, 170. doi: 10.1016/S0009-2614(98)00036-0  doi: 10.1016/S0009-2614(98)00036-0

    79. [79]

      Espinosa, E.; Molins, E. J. Chem. Phys. 2000, 113, 5686. doi: 10.1063/1.1290612  doi: 10.1063/1.1290612

    80. [80]

      Koch, U.; Popelier, P. L. A. J. Phys. Chem. A 1995, 99, 9747. doi: 10.1021/j100024a016  doi: 10.1021/j100024a016

    81. [81]

      Popelier, P. L. A. J. Phys. Chem. A 1998, 102, 1873. doi: 10.1021/jp9805048  doi: 10.1021/jp9805048

  • 加载中
    1. [1]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    2. [2]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    3. [3]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    4. [4]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    5. [5]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    6. [6]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    7. [7]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    8. [8]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    9. [9]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    10. [10]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    11. [11]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    12. [12]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    13. [13]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    14. [14]

      Ze WangHao LiangAnnan LiuXingchen LiLin GuanLei LiLiang HeAndrew K. WhittakerBai YangQuan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765

    15. [15]

      Ruike HuKangmin WangJunxiang LiuJingxian ZhangGuoliang YangLiqiu WanBijin Li . Extended π-conjugated systems by external ligand-assisted C−H olefination of heterocycles: Facile access to single-molecular white-light-emitting and NIR fluorescence materials. Chinese Chemical Letters, 2025, 36(4): 110113-. doi: 10.1016/j.cclet.2024.110113

    16. [16]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    17. [17]

      Bin Chen Chaoyang Zheng Dehuan Shi Yi Huang Renxia Deng Yang Wei Zheyuan Liu Yan Yu Shenghong Zhong . p-d orbital hybridization induced by CuGa2 promotes selective N2 electroreduction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100468-100468. doi: 10.1016/j.cjsc.2024.100468

    18. [18]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    19. [19]

      Xue ZhaoRui ZhaoQian LiuHenghui ChenJing WangYongfeng HuYan LiQiuming PengJohn S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496

    20. [20]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

Metrics
  • PDF Downloads(10)
  • Abstract views(216)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return