Strength of Intramolecular Hydrogen Bonds
- Corresponding author: MO Yirong, yirong.mo@wmich.edu
Citation:
JIANG Xiaoyu, WU Wei, MO Yirong. Strength of Intramolecular Hydrogen Bonds[J]. Acta Physico-Chimica Sinica,
;2018, 34(3): 278-285.
doi:
10.3866/PKU.WHXB201708174
Scheiner, S. Hydrogen Bonding: A Theoretical Perspective; Oxford University Press: New York, 1997.
Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, 1997.
Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond In Structural Chemistry and Biology; Oxford University Press: New York, 2001.
Hydrogen Bonding -New Insights; Grabowski, S. J., Ed. ; Springer: Berlin, 2006; Vol. 3.
Gilli, G.; Gilli, P. The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory; Oxford University Press: New York, 2009; Vol.23.
Supramolecular Assembly via Hydrogen Bonds; Mingos, D. M. P. Ed. ; Springer: Berlin, 2010; Vol. 108.
Gilli, G.; Bellucci, F.; Ferretti, V.; Bertolasi, V. J. Am. Chem. Soc. 1989, 111, 1023. doi: 10.1021/ja00185a035
doi: 10.1021/ja00185a035
Bertolasi, V.; Gilli, P.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 1991, 113, 4917. doi: 10.1021/ja00013a030
doi: 10.1021/ja00013a030
Gilli, P.; Bertolasi, V.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 2000, 122, 10405. doi: 10.1021/ja000921+
doi: 10.1021/ja000921+
Gilli, P.; Bertolasi, V.; Pretto, L.; Lyčka, A.; Gilli, G. J. Am. Chem. Soc. 2002, 124, 13554. doi: 10.1021/ja020589x
doi: 10.1021/ja020589x
Gilli, P.; Bertolasi, V.; Pretto, L.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 2004, 126, 3845. doi: 10.1021/ja030213z
doi: 10.1021/ja030213z
Srinivasan, R.; Feenstra, J. S.; Park, S. T.; Xu, S.; Zewail, A. H. J. Am. Chem. Soc. 2004, 126, 2266. doi: 10.1021/ja031927c
doi: 10.1021/ja031927c
Sobczyk, L.; Grabowski, S. J.; Krygowski, T. M. Chem. Rev. 2005, 105, 3513. doi: 10.1002/chin.200603277
doi: 10.1002/chin.200603277
Sanz, P.; Mó, O.; Yáñez, M.; Elguero, J. J. Phys. Chem. A 2007, 111, 3585. doi: 10.1021/jp067514q
doi: 10.1021/jp067514q
Sanz, P.; Mó, O.; Yáñez, M.; Elguero, J. Chem. Eur. J. 2008, 14, 4225. doi: 10.1002/chem.200701827
doi: 10.1002/chem.200701827
Alkorta, I.; Elguero, J.; Mó, O.; Yáñez, M.; Del Bene, J. E. Mol. Phys. 2004, 102, 2563. doi: 10.1080/00268970412331292885
doi: 10.1080/00268970412331292885
Alkorta, I.; Elguero, J.; Mó, O.; Yáñez, M.; Del Bene, J. E. Chem. Phys. Lett. 2005, 411, 411. doi: 10.1016/j.cplett.2005.06.061
doi: 10.1016/j.cplett.2005.06.061
Beck, J. F.; Mo, Y. J. Comput. Chem. 2007, 28, 455. doi: 10.1002/jcc.20523
doi: 10.1002/jcc.20523
Grabowski, S. J. J. Phys. Org. Chem. 2003, 16, 797. doi: 10.1002/poc.675
doi: 10.1002/poc.675
Grabowski, S. J. J. Mol. Struct. 2001, 562, 137. doi: 10.1016/S0022-2860(00)00863-2
doi: 10.1016/S0022-2860(00)00863-2
Grabowski, S. J. J. Phys. Chem. A 2001, 105, 10739. doi: 10.1021/jp011819h
doi: 10.1021/jp011819h
Grabowski, S. J. J. Phys. Org. Chem. 2004, 17, 18. doi: 10.1002/poc.685
doi: 10.1002/poc.685
Wang, C. S.; Zhang, Y.; Gao, K.; Yang, Z. Z. J. Chem. Phys. 2005, 123, 024307. doi: 10.1063/1.1979471
doi: 10.1063/1.1979471
Jablonski, M.; Kaczmarek, A.; Sadlej, A. J. J. Phys. Chem. A 2006, 110, 10890. doi: 10.1021/jp062759o
doi: 10.1021/jp062759o
Liu, T.; Li, H.; Huang, M. B.; Duan, Y.; Wang, Z. X. J. Phys. Chem. A 2008, 112, 5436. doi: 10.1021/jp712052e
doi: 10.1021/jp712052e
Deshmukh, M. M.; Gadre, S. R. J. Phys. Chem. A 2009, 113, 7927. doi: 10.1021/jp9031207
doi: 10.1021/jp9031207
Gilli, P.; Pretto, L.; Bertolasi, V.; Gilli, G. Acc. Chem. Res. 2009, 42, 33. doi: 10.1021/ar800001k
doi: 10.1021/ar800001k
Wendler, K.; Thar, J.; Zahn, S.; Kirchner, B. J. Phys. Chem. A 2010, 114, 9529. doi: 10.1021/jp103470e
doi: 10.1021/jp103470e
Valence Bond Theory; Cooper, D. L. Ed. ; Elsevier: Amsterdam, 2002.
Gallup, G. A. Valence Bond Methods: Theory and Applications; Cambridge University Press: New York, 2002.
Shaik, S. S. ; Hiberty, P. C. A Chemist's Guide to Valence Bond Theory; Wiley: Hoboken, New Jersey, 2008.
Wu, W.; Su, P.; Shaik, S.; Hiberty, P. C. Chem. Rev. 2011, 111, 7557. doi: 10.1021/cr100228r
doi: 10.1021/cr100228r
Mo, Y.; Peyerimhoff, S. D. J. Chem. Phys. 1998, 109, 1687. doi: 10.1063/1.476742
doi: 10.1063/1.476742
Mo, Y.; Song, L.; Lin, Y. J. Phys. Chem. A 2007, 111, 8291. doi: 10.1021/jp0724065
doi: 10.1021/jp0724065
Mo, Y. In The Chemical Bond: Fundamental Aspects of Chemical Bonding; Frenking, G., Shaik, S., Eds. ; Wiley-VCH: Weinheim, Germany, 2014, p 199. doi: 10.1002/9783527664696.ch6
Rozas, I. Phys. Chem. Chem. Phys. 2007, 9, 2782. doi: 10.1039/B618225A
doi: 10.1039/B618225A
Estácio, S. G.; Cabral do Couto, P.; Costa Cabral, B. J.; Minas da Piedade, M. E.; Martinho Sim es, J. A. J. Phys. Chem. A 2004, 108, 10834. doi: 10.1021/jp0473422
doi: 10.1021/jp0473422
Lipkowskia, P.; Kolla, A.; Karpfenb, A.; Wolschannb, P. Chem. Phys. Lett. 2002, 360, 256. doi: 10.1016/S0009-2614(02)00830-8
doi: 10.1016/S0009-2614(02)00830-8
Woodford, J. N. J. Phys. Chem. A 2007, 111, 8519. doi: 10.1021/jp073098d
doi: 10.1021/jp073098d
Latajka, Z.; Scheiner, S. J. Phys. Chem. 1994, 96, 9764. doi: 10.1021/j100203a035
doi: 10.1021/j100203a035
Scheiner, S.; Kar, T.; Čuma, M. J. Phys. Chem. A 1997, 101, 5901. doi: 10.1021/jp9713874
doi: 10.1021/jp9713874
González, L.; Mó, O.; Yáñez, M. J. Phys. Chem. A 1997, 101, 9710. doi: 10.1021/ jp970735z
doi: 10.1021/jp970735z
Zhang, Y.; Wang, C. S. J. Comput. Chem. 2009, 30, 1251. doi: 10.1002/jcc.21141
doi: 10.1002/jcc.21141
Rozas, I.; Alkorta, I.; Elguero, J. J. Phys. Chem. A 2001, 105, 10462. doi: 10.1021/jp013125e
doi: 10.1021/jp013125e
Deshmukh, M. M.; Gadre, S. R.; Bartolotti, L. J. J. Phys. Chem. A 2006, 110, 12519. doi: 10.1021/jp065836o
doi: 10.1021/jp065836o
Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, U. K., 1990.
Pacios, L. F. J. Phys. Chem. A 2004, 108, 1177. doi: 10.1021/jp030978t
doi: 10.1021/jp030978t
LaPointe, S. M.; Farrag, S.; Bohrquez, H. J.; Boyd, R. J. J. Phys. Chem. B 2009, 113, 10957. doi: 10.1021/jp903635h
doi: 10.1021/jp903635h
Mo, Y. J. Phys. Chem. A 2012, 116, 5240. doi: 10.1021/jp3029769
doi: 10.1021/jp3029769
Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899. doi: 10.1021/cr00088a005
doi: 10.1021/cr00088a005
Weinhold, F.; Landis, C. Valency and Bonding; Cambridge University Press: Cambridge, England, 2005.
Pophristic, V.; Goodman, L. Nature 2001, 411, 565. doi: 10.1038/35079036
doi: 10.1038/35079036
Bickelhaupt, F. M.; Baerends, E. J. Angew. Chem. Int. Ed. 2003, 42, 4183. doi: 10.1002/anie.200350947
doi: 10.1002/anie.200350947
Weinhold, F. Angew. Chem. Int. Ed. 2003, 42, 4188. doi: 10.1002/anie.200351777
doi: 10.1002/anie.200351777
Mo, Y.; Gao, J. Acc. Chem. Res. 2007, 40, 113. doi: 10.1021/ar068073w
doi: 10.1021/ar068073w
Mo, Y.; Wu, W.; Song, L.; Lin, M.; Zhang, Q.; Gao, J. Angew. Chem. Int. Ed. 2004, 43, 1986. doi: 10.1002/anie.200352931
doi: 10.1002/anie.200352931
Edmiston, C. Theochem 1988, 46, 331. doi: 10.1016/0166-1280(88)80267-7
doi: 10.1016/0166-1280(88)80267-7
Mo, Y.; Zhang, Q. J. Mol. Struct.(Theochem) 1995, 357, 171. doi: 10.1016/0166-1280(95)04274-A
doi: 10.1016/0166-1280(95)04274-A
Song, L.; Mo, Y.; Zhang, Q.; Wu, W. J. Comput. Chem. 2005, 26, 514. doi: 10.1002/jcc.20187
doi: 10.1002/jcc.20187
Song, L. ; Chen, Z. ; Ying, F. ; Song, J. ; Chen, X. ; Su, P. ; Mo, Y. ; Zhang, Q. ; Wu, W. XMVB 2. 0: An ab initio Non-orthogonal Valence Bond Program; Xiamen University: Xiamen, 2012.
Mulliken, R. S.; Parr, R. G. J. Chem. Phys. 1951, 19, 1271. doi: 10.1063/1.1748011
doi: 10.1063/1.1748011
Sovers, O. J.; Kern, C. W.; Pitzer, R. M.; Karplus, M. J. Chem. Phys. 1968, 49, 2592. doi: 10.1063/1.1681576
doi: 10.1063/1.1681576
Stoll, H.; Preuss, H. Theor. Chim. Acta 1977, 46, 11. doi: 10.1007/BF02401407
doi: 10.1007/BF02401407
Kollmar, H. J. Am. Chem. Soc. 1979, 101, 4832. doi: 10.1021/ja00511a009
doi: 10.1021/ja00511a009
Mehler, E. L. J. Chem. Phys. 1977, 67, 2728. doi: 10.1063/1.435187
doi: 10.1063/1.435187
Gianinetti, E.; Raimondi; Tornaghi, E. Int. J. Quantum Chem. 1996, 60, 157. doi: 10.1002/(SICI)1097-461X(1996)60:1<157::AID-QUA17>3.0.CO;2-C
doi: 10.1002/(SICI)1097-461X(1996)60:1<157::AID-QUA17>3.0.CO;2-C
Mo, Y. J. Chem. Phys. 2003, 119, 1300. doi: 10.1063/1.1580094
doi: 10.1063/1.1580094
Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. J.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347. doi: 10.1002/jcc.540141112
doi: 10.1002/jcc.540141112
Andersson, M. P.; Uvdal, P. J. Phys. Chem. A 2005, 109, 2937. doi: 10.1021/jp045733a
doi: 10.1021/jp045733a
Boys, S. F. Rev. Mod. Phys. 1960, 32, 296. doi: 10.1103/RevModPhys.32.296
doi: 10.1103/RevModPhys.32.296
Edmiston, C.; Ruedenberg, K. Rev. Mod. Phys. 1963, 35, 457. doi: 10.1103/RevModPhys.35.457
doi: 10.1103/RevModPhys.35.457
Pipek, J.; Mezey, P. G. J. Chem. Phys. 1989, 90, 4916. doi: 10.1063/1.456588
doi: 10.1063/1.456588
Ichikawa, M. Acta Cryst. 1978, B34, 2074. doi: 10.1107/S0567740878007475
doi: 10.1107/S0567740878007475
Steiner, T.; Saenger, W. Acta Cryst. 1994, B50, 348. doi: 10.1107/S0108768193011966
doi: 10.1107/S0108768193011966
Mo, Y.; Gao, J.; Peyerimhoff, S. D. J. Chem. Phys. 2000, 112, 5530. doi: 10.1063/1.481185
doi: 10.1063/1.481185
Mo, Y.; Bao, P.; Gao, J. Phys. Chem. Chem. Phys. 2011, 13, 6760. doi: 10.1039/c0cp02206c
doi: 10.1039/c0cp02206c
Mó, O.; Yánez, M.; Elguero, J. J. Chem. Phys. 1992, 97, 6628. doi: 10.1063/1.463666
doi: 10.1063/1.463666
Espinosa, E.; Molins, E.; Lecomte, C. Chem. Phys. Lett. 1998, 285, 170. doi: 10.1016/S0009-2614(98)00036-0
doi: 10.1016/S0009-2614(98)00036-0
Espinosa, E.; Molins, E. J. Chem. Phys. 2000, 113, 5686. doi: 10.1063/1.1290612
doi: 10.1063/1.1290612
Koch, U.; Popelier, P. L. A. J. Phys. Chem. A 1995, 99, 9747. doi: 10.1021/j100024a016
doi: 10.1021/j100024a016
Popelier, P. L. A. J. Phys. Chem. A 1998, 102, 1873. doi: 10.1021/jp9805048
doi: 10.1021/jp9805048
Yang Qin , Jiangtian Li , Xuehao Zhang , Kaixuan Wan , Heao Zhang , Feiyang Huang , Limei Wang , Hongxun Wang , Longjie Li , Xianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826
Fangzhou Wang , Wentong Gao , Chenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305
Yunkang Tong , Haiqiao Huang , Haolan Li , Mingle Li , Wen Sun , Jianjun Du , Jiangli Fan , Lei Wang , Bin Liu , Xiaoqiang Chen , Xiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663
Junmeng Luo , Qiongqiong Wan , Suming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836
Qiongqiong Wan , Yanan Xiao , Guifang Feng , Xin Dong , Wenjing Nie , Ming Gao , Qingtao Meng , Suming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775
Yi Luo , Lin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648
Guoju Guo , Xufeng Li , Jie Ma , Yongjia Shi , Jian Lv , Daoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024
Peng Wang , Jianjun Wang , Ni Song , Xin Zhou , Ming Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748
Zhe Wang , Li-Peng Hou , Qian-Kui Zhang , Nan Yao , Aibing Chen , Jia-Qi Huang , Xue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570
Manman Ou , Yunjian Zhu , Jiahao Liu , Zhaoxuan Liu , Jianjun Wang , Jun Sun , Chuanxiang Qin , Lixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510
Yue Ren , Kang Li , Yi-Zi Wang , Shao-Peng Zhao , Shu-Min Pan , Haojie Fu , Mengfan Jing , Yaming Wang , Fengyuan Yang , Chuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Ningning Gao , Yue Zhang , Zhenhao Yang , Lijing Xu , Kongyin Zhao , Qingping Xin , Junkui Gao , Junjun Shi , Jin Zhong , Huiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820
Ze Wang , Hao Liang , Annan Liu , Xingchen Li , Lin Guan , Lei Li , Liang He , Andrew K. Whittaker , Bai Yang , Quan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765
Ruike Hu , Kangmin Wang , Junxiang Liu , Jingxian Zhang , Guoliang Yang , Liqiu Wan , Bijin Li . Extended π-conjugated systems by external ligand-assisted C−H olefination of heterocycles: Facile access to single-molecular white-light-emitting and NIR fluorescence materials. Chinese Chemical Letters, 2025, 36(4): 110113-. doi: 10.1016/j.cclet.2024.110113
Jian Ji , Jie Yan , Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360
Bin Chen , Chaoyang Zheng , Dehuan Shi , Yi Huang , Renxia Deng , Yang Wei , Zheyuan Liu , Yan Yu , Shenghong Zhong . p-d orbital hybridization induced by CuGa2 promotes selective N2 electroreduction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100468-100468. doi: 10.1016/j.cjsc.2024.100468
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
Xue Zhao , Rui Zhao , Qian Liu , Henghui Chen , Jing Wang , Yongfeng Hu , Yan Li , Qiuming Peng , John S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496
Yiwen Lin , Yijie Chen , Chunhui Deng , Nianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813