Citation: JIANG Xiaoyu, WU Wei, MO Yirong. Strength of Intramolecular Hydrogen Bonds[J]. Acta Physico-Chimica Sinica, ;2018, 34(3): 278-285. doi: 10.3866/PKU.WHXB201708174 shu

Strength of Intramolecular Hydrogen Bonds

  • Corresponding author: MO Yirong, yirong.mo@wmich.edu
  • Received Date: 17 July 2017
    Revised Date: 10 August 2017
    Accepted Date: 14 August 2017
    Available Online: 17 March 2017

  • The concept of resonance-assisted hydrogen bonds (RAHBs) highlights the synergistic interplay between the π-resonance and hydrogen bonding interactions. This concept has been well-accepted in academia and is widely used in practice. However, it has been argued that the seemingly enhanced intramolecular hydrogen bonding (IMHB) in unsaturated compounds may simply be a result of the constraints imposed by the σ-skeleton framework. Thus, it is crucial to estimate the strength of IMHBs. In this work, we used two approaches to probe the resonance effect and estimate the strength of the IMHBs in the two exemplary cases of the enol forms of acetylacetone and o-hydroxyacetophenone. One approach is the block-localized wavefunction (BLW) method, which is a variant of the ab initio valence bond (VB) theory. Using this approach, it is possible to derive the geometries and energetics with resonance shut down. The other approach is Edmiston's truncated localized molecular orbital (TLMO) technique, which monitors the energy changes by removing the delocalization tails from localized molecular orbitals. The integrated BLW and TLMO studies confirmed that the hydrogen bonding in these two molecules is indeed enhanced by π-resonance, and that this enhancement is not a result of σ constraints.
  • 加载中
    1. [1]

      Scheiner, S. Hydrogen Bonding: A Theoretical Perspective; Oxford University Press: New York, 1997.

    2. [2]

      Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, 1997.

    3. [3]

      Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond In Structural Chemistry and Biology; Oxford University Press: New York, 2001.

    4. [4]

      Hydrogen Bonding -New Insights; Grabowski, S. J., Ed. ; Springer: Berlin, 2006; Vol. 3.

    5. [5]

      Gilli, G.; Gilli, P. The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory; Oxford University Press: New York, 2009; Vol.23.

    6. [6]

      Supramolecular Assembly via Hydrogen Bonds; Mingos, D. M. P. Ed. ; Springer: Berlin, 2010; Vol. 108.

    7. [7]

      Gilli, G.; Bellucci, F.; Ferretti, V.; Bertolasi, V. J. Am. Chem. Soc. 1989, 111, 1023. doi: 10.1021/ja00185a035  doi: 10.1021/ja00185a035

    8. [8]

      Bertolasi, V.; Gilli, P.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 1991, 113, 4917. doi: 10.1021/ja00013a030  doi: 10.1021/ja00013a030

    9. [9]

      Gilli, P.; Bertolasi, V.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 2000, 122, 10405. doi: 10.1021/ja000921+  doi: 10.1021/ja000921+

    10. [10]

      Gilli, P.; Bertolasi, V.; Pretto, L.; Lyčka, A.; Gilli, G. J. Am. Chem. Soc. 2002, 124, 13554. doi: 10.1021/ja020589x  doi: 10.1021/ja020589x

    11. [11]

      Gilli, P.; Bertolasi, V.; Pretto, L.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 2004, 126, 3845. doi: 10.1021/ja030213z  doi: 10.1021/ja030213z

    12. [12]

      Srinivasan, R.; Feenstra, J. S.; Park, S. T.; Xu, S.; Zewail, A. H. J. Am. Chem. Soc. 2004, 126, 2266. doi: 10.1021/ja031927c  doi: 10.1021/ja031927c

    13. [13]

      Sobczyk, L.; Grabowski, S. J.; Krygowski, T. M. Chem. Rev. 2005, 105, 3513. doi: 10.1002/chin.200603277  doi: 10.1002/chin.200603277

    14. [14]

      Sanz, P.; Mó, O.; Yáñez, M.; Elguero, J. J. Phys. Chem. A 2007, 111, 3585. doi: 10.1021/jp067514q  doi: 10.1021/jp067514q

    15. [15]

      Sanz, P.; Mó, O.; Yáñez, M.; Elguero, J. Chem. Eur. J. 2008, 14, 4225. doi: 10.1002/chem.200701827  doi: 10.1002/chem.200701827

    16. [16]

      Alkorta, I.; Elguero, J.; Mó, O.; Yáñez, M.; Del Bene, J. E. Mol. Phys. 2004, 102, 2563. doi: 10.1080/00268970412331292885  doi: 10.1080/00268970412331292885

    17. [17]

      Alkorta, I.; Elguero, J.; Mó, O.; Yáñez, M.; Del Bene, J. E. Chem. Phys. Lett. 2005, 411, 411. doi: 10.1016/j.cplett.2005.06.061  doi: 10.1016/j.cplett.2005.06.061

    18. [18]

      Beck, J. F.; Mo, Y. J. Comput. Chem. 2007, 28, 455. doi: 10.1002/jcc.20523  doi: 10.1002/jcc.20523

    19. [19]

      Grabowski, S. J. J. Phys. Org. Chem. 2003, 16, 797. doi: 10.1002/poc.675  doi: 10.1002/poc.675

    20. [20]

      Grabowski, S. J. J. Mol. Struct. 2001, 562, 137. doi: 10.1016/S0022-2860(00)00863-2  doi: 10.1016/S0022-2860(00)00863-2

    21. [21]

      Grabowski, S. J. J. Phys. Chem. A 2001, 105, 10739. doi: 10.1021/jp011819h  doi: 10.1021/jp011819h

    22. [22]

      Grabowski, S. J. J. Phys. Org. Chem. 2004, 17, 18. doi: 10.1002/poc.685  doi: 10.1002/poc.685

    23. [23]

      Wang, C. S.; Zhang, Y.; Gao, K.; Yang, Z. Z. J. Chem. Phys. 2005, 123, 024307. doi: 10.1063/1.1979471  doi: 10.1063/1.1979471

    24. [24]

      Jablonski, M.; Kaczmarek, A.; Sadlej, A. J. J. Phys. Chem. A 2006, 110, 10890. doi: 10.1021/jp062759o  doi: 10.1021/jp062759o

    25. [25]

      Liu, T.; Li, H.; Huang, M. B.; Duan, Y.; Wang, Z. X. J. Phys. Chem. A 2008, 112, 5436. doi: 10.1021/jp712052e  doi: 10.1021/jp712052e

    26. [26]

      Deshmukh, M. M.; Gadre, S. R. J. Phys. Chem. A 2009, 113, 7927. doi: 10.1021/jp9031207  doi: 10.1021/jp9031207

    27. [27]

      Gilli, P.; Pretto, L.; Bertolasi, V.; Gilli, G. Acc. Chem. Res. 2009, 42, 33. doi: 10.1021/ar800001k  doi: 10.1021/ar800001k

    28. [28]

      Wendler, K.; Thar, J.; Zahn, S.; Kirchner, B. J. Phys. Chem. A 2010, 114, 9529. doi: 10.1021/jp103470e  doi: 10.1021/jp103470e

    29. [29]

      Valence Bond Theory; Cooper, D. L. Ed. ; Elsevier: Amsterdam, 2002.

    30. [30]

      Gallup, G. A. Valence Bond Methods: Theory and Applications; Cambridge University Press: New York, 2002.

    31. [31]

      Shaik, S. S. ; Hiberty, P. C. A Chemist's Guide to Valence Bond Theory; Wiley: Hoboken, New Jersey, 2008.

    32. [32]

      Wu, W.; Su, P.; Shaik, S.; Hiberty, P. C. Chem. Rev. 2011, 111, 7557. doi: 10.1021/cr100228r  doi: 10.1021/cr100228r

    33. [33]

      Mo, Y.; Peyerimhoff, S. D. J. Chem. Phys. 1998, 109, 1687. doi: 10.1063/1.476742  doi: 10.1063/1.476742

    34. [34]

      Mo, Y.; Song, L.; Lin, Y. J. Phys. Chem. A 2007, 111, 8291. doi: 10.1021/jp0724065  doi: 10.1021/jp0724065

    35. [35]

      Mo, Y. In The Chemical Bond: Fundamental Aspects of Chemical Bonding; Frenking, G., Shaik, S., Eds. ; Wiley-VCH: Weinheim, Germany, 2014, p 199. doi: 10.1002/9783527664696.ch6

    36. [36]

      Rozas, I. Phys. Chem. Chem. Phys. 2007, 9, 2782. doi: 10.1039/B618225A  doi: 10.1039/B618225A

    37. [37]

      Estácio, S. G.; Cabral do Couto, P.; Costa Cabral, B. J.; Minas da Piedade, M. E.; Martinho Sim es, J. A. J. Phys. Chem. A 2004, 108, 10834. doi: 10.1021/jp0473422  doi: 10.1021/jp0473422

    38. [38]

      Lipkowskia, P.; Kolla, A.; Karpfenb, A.; Wolschannb, P. Chem. Phys. Lett. 2002, 360, 256. doi: 10.1016/S0009-2614(02)00830-8  doi: 10.1016/S0009-2614(02)00830-8

    39. [39]

      Woodford, J. N. J. Phys. Chem. A 2007, 111, 8519. doi: 10.1021/jp073098d  doi: 10.1021/jp073098d

    40. [40]

      Latajka, Z.; Scheiner, S. J. Phys. Chem. 1994, 96, 9764. doi: 10.1021/j100203a035  doi: 10.1021/j100203a035

    41. [41]

      Scheiner, S.; Kar, T.; Čuma, M. J. Phys. Chem. A 1997, 101, 5901. doi: 10.1021/jp9713874  doi: 10.1021/jp9713874

    42. [42]

      González, L.; Mó, O.; Yáñez, M. J. Phys. Chem. A 1997, 101, 9710. doi: 10.1021/ jp970735z  doi: 10.1021/jp970735z

    43. [43]

      Zhang, Y.; Wang, C. S. J. Comput. Chem. 2009, 30, 1251. doi: 10.1002/jcc.21141  doi: 10.1002/jcc.21141

    44. [44]

      Rozas, I.; Alkorta, I.; Elguero, J. J. Phys. Chem. A 2001, 105, 10462. doi: 10.1021/jp013125e  doi: 10.1021/jp013125e

    45. [45]

      Deshmukh, M. M.; Gadre, S. R.; Bartolotti, L. J. J. Phys. Chem. A 2006, 110, 12519. doi: 10.1021/jp065836o  doi: 10.1021/jp065836o

    46. [46]

      Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, U. K., 1990.

    47. [47]

      Pacios, L. F. J. Phys. Chem. A 2004, 108, 1177. doi: 10.1021/jp030978t  doi: 10.1021/jp030978t

    48. [48]

      LaPointe, S. M.; Farrag, S.; Bohrquez, H. J.; Boyd, R. J. J. Phys. Chem. B 2009, 113, 10957. doi: 10.1021/jp903635h  doi: 10.1021/jp903635h

    49. [49]

      Mo, Y. J. Phys. Chem. A 2012, 116, 5240. doi: 10.1021/jp3029769  doi: 10.1021/jp3029769

    50. [50]

      Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899. doi: 10.1021/cr00088a005  doi: 10.1021/cr00088a005

    51. [51]

      Weinhold, F.; Landis, C. Valency and Bonding; Cambridge University Press: Cambridge, England, 2005.

    52. [52]

      Pophristic, V.; Goodman, L. Nature 2001, 411, 565. doi: 10.1038/35079036  doi: 10.1038/35079036

    53. [53]

      Bickelhaupt, F. M.; Baerends, E. J. Angew. Chem. Int. Ed. 2003, 42, 4183. doi: 10.1002/anie.200350947  doi: 10.1002/anie.200350947

    54. [54]

      Weinhold, F. Angew. Chem. Int. Ed. 2003, 42, 4188. doi: 10.1002/anie.200351777  doi: 10.1002/anie.200351777

    55. [55]

      Mo, Y.; Gao, J. Acc. Chem. Res. 2007, 40, 113. doi: 10.1021/ar068073w  doi: 10.1021/ar068073w

    56. [56]

      Mo, Y.; Wu, W.; Song, L.; Lin, M.; Zhang, Q.; Gao, J. Angew. Chem. Int. Ed. 2004, 43, 1986. doi: 10.1002/anie.200352931  doi: 10.1002/anie.200352931

    57. [57]

      Edmiston, C. Theochem 1988, 46, 331. doi: 10.1016/0166-1280(88)80267-7  doi: 10.1016/0166-1280(88)80267-7

    58. [58]

      Mo, Y.; Zhang, Q. J. Mol. Struct.(Theochem) 1995, 357, 171. doi: 10.1016/0166-1280(95)04274-A  doi: 10.1016/0166-1280(95)04274-A

    59. [59]

      Song, L.; Mo, Y.; Zhang, Q.; Wu, W. J. Comput. Chem. 2005, 26, 514. doi: 10.1002/jcc.20187  doi: 10.1002/jcc.20187

    60. [60]

      Song, L. ; Chen, Z. ; Ying, F. ; Song, J. ; Chen, X. ; Su, P. ; Mo, Y. ; Zhang, Q. ; Wu, W. XMVB 2. 0: An ab initio Non-orthogonal Valence Bond Program; Xiamen University: Xiamen, 2012.

    61. [61]

      Mulliken, R. S.; Parr, R. G. J. Chem. Phys. 1951, 19, 1271. doi: 10.1063/1.1748011  doi: 10.1063/1.1748011

    62. [62]

      Sovers, O. J.; Kern, C. W.; Pitzer, R. M.; Karplus, M. J. Chem. Phys. 1968, 49, 2592. doi: 10.1063/1.1681576  doi: 10.1063/1.1681576

    63. [63]

      Stoll, H.; Preuss, H. Theor. Chim. Acta 1977, 46, 11. doi: 10.1007/BF02401407  doi: 10.1007/BF02401407

    64. [64]

      Kollmar, H. J. Am. Chem. Soc. 1979, 101, 4832. doi: 10.1021/ja00511a009  doi: 10.1021/ja00511a009

    65. [65]

      Mehler, E. L. J. Chem. Phys. 1977, 67, 2728. doi: 10.1063/1.435187  doi: 10.1063/1.435187

    66. [66]

      Gianinetti, E.; Raimondi; Tornaghi, E. Int. J. Quantum Chem. 1996, 60, 157. doi: 10.1002/(SICI)1097-461X(1996)60:1<157::AID-QUA17>3.0.CO;2-C  doi: 10.1002/(SICI)1097-461X(1996)60:1<157::AID-QUA17>3.0.CO;2-C

    67. [67]

      Mo, Y. J. Chem. Phys. 2003, 119, 1300. doi: 10.1063/1.1580094  doi: 10.1063/1.1580094

    68. [68]

      Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. J.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347. doi: 10.1002/jcc.540141112  doi: 10.1002/jcc.540141112

    69. [69]

      Andersson, M. P.; Uvdal, P. J. Phys. Chem. A 2005, 109, 2937. doi: 10.1021/jp045733a  doi: 10.1021/jp045733a

    70. [70]

      Boys, S. F. Rev. Mod. Phys. 1960, 32, 296. doi: 10.1103/RevModPhys.32.296  doi: 10.1103/RevModPhys.32.296

    71. [71]

      Edmiston, C.; Ruedenberg, K. Rev. Mod. Phys. 1963, 35, 457. doi: 10.1103/RevModPhys.35.457  doi: 10.1103/RevModPhys.35.457

    72. [72]

      Pipek, J.; Mezey, P. G. J. Chem. Phys. 1989, 90, 4916. doi: 10.1063/1.456588  doi: 10.1063/1.456588

    73. [73]

      Ichikawa, M. Acta Cryst. 1978, B34, 2074. doi: 10.1107/S0567740878007475  doi: 10.1107/S0567740878007475

    74. [74]

      Steiner, T.; Saenger, W. Acta Cryst. 1994, B50, 348. doi: 10.1107/S0108768193011966  doi: 10.1107/S0108768193011966

    75. [75]

      Mo, Y.; Gao, J.; Peyerimhoff, S. D. J. Chem. Phys. 2000, 112, 5530. doi: 10.1063/1.481185  doi: 10.1063/1.481185

    76. [76]

      Mo, Y.; Bao, P.; Gao, J. Phys. Chem. Chem. Phys. 2011, 13, 6760. doi: 10.1039/c0cp02206c  doi: 10.1039/c0cp02206c

    77. [77]

      Mó, O.; Yánez, M.; Elguero, J. J. Chem. Phys. 1992, 97, 6628. doi: 10.1063/1.463666  doi: 10.1063/1.463666

    78. [78]

      Espinosa, E.; Molins, E.; Lecomte, C. Chem. Phys. Lett. 1998, 285, 170. doi: 10.1016/S0009-2614(98)00036-0  doi: 10.1016/S0009-2614(98)00036-0

    79. [79]

      Espinosa, E.; Molins, E. J. Chem. Phys. 2000, 113, 5686. doi: 10.1063/1.1290612  doi: 10.1063/1.1290612

    80. [80]

      Koch, U.; Popelier, P. L. A. J. Phys. Chem. A 1995, 99, 9747. doi: 10.1021/j100024a016  doi: 10.1021/j100024a016

    81. [81]

      Popelier, P. L. A. J. Phys. Chem. A 1998, 102, 1873. doi: 10.1021/jp9805048  doi: 10.1021/jp9805048

  • 加载中
    1. [1]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    2. [2]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    3. [3]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    4. [4]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    5. [5]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    6. [6]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    7. [7]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    8. [8]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    9. [9]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    10. [10]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    11. [11]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    12. [12]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    13. [13]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    14. [14]

      Ze WangHao LiangAnnan LiuXingchen LiLin GuanLei LiLiang HeAndrew K. WhittakerBai YangQuan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765

    15. [15]

      Ruike HuKangmin WangJunxiang LiuJingxian ZhangGuoliang YangLiqiu WanBijin Li . Extended π-conjugated systems by external ligand-assisted C−H olefination of heterocycles: Facile access to single-molecular white-light-emitting and NIR fluorescence materials. Chinese Chemical Letters, 2025, 36(4): 110113-. doi: 10.1016/j.cclet.2024.110113

    16. [16]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    17. [17]

      Bin Chen Chaoyang Zheng Dehuan Shi Yi Huang Renxia Deng Yang Wei Zheyuan Liu Yan Yu Shenghong Zhong . p-d orbital hybridization induced by CuGa2 promotes selective N2 electroreduction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100468-100468. doi: 10.1016/j.cjsc.2024.100468

    18. [18]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    19. [19]

      Xue ZhaoRui ZhaoQian LiuHenghui ChenJing WangYongfeng HuYan LiQiuming PengJohn S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496

    20. [20]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

Metrics
  • PDF Downloads(10)
  • Abstract views(215)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return