Strength of Intramolecular Hydrogen Bonds
- Corresponding author: MO Yirong, yirong.mo@wmich.edu
 
	            Citation:
	            
		            JIANG Xiaoyu, WU Wei, MO Yirong. Strength of Intramolecular Hydrogen Bonds[J]. Acta Physico-Chimica Sinica,
							;2018, 34(3): 278-285.
						
							doi:
								10.3866/PKU.WHXB201708174
						
					
				
					
				
	        
	                Scheiner, S. Hydrogen Bonding: A Theoretical Perspective; Oxford University Press: New York, 1997.
Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, 1997.
Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond In Structural Chemistry and Biology; Oxford University Press: New York, 2001.
Hydrogen Bonding -New Insights; Grabowski, S. J., Ed. ; Springer: Berlin, 2006; Vol. 3.
Gilli, G.; Gilli, P. The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory; Oxford University Press: New York, 2009; Vol.23.
Supramolecular Assembly via Hydrogen Bonds; Mingos, D. M. P. Ed. ; Springer: Berlin, 2010; Vol. 108.
				Gilli, G.; Bellucci, F.; Ferretti, V.; Bertolasi, V. J. Am. Chem. Soc. 1989, 111, 1023. doi: 10.1021/ja00185a035
												 doi: 10.1021/ja00185a035
											
										
				Bertolasi, V.; Gilli, P.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 1991, 113, 4917. doi: 10.1021/ja00013a030
												 doi: 10.1021/ja00013a030
											
										
				Gilli, P.; Bertolasi, V.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 2000, 122, 10405. doi: 10.1021/ja000921+
												 doi: 10.1021/ja000921+
											
										
				Gilli, P.; Bertolasi, V.; Pretto, L.; Lyčka, A.; Gilli, G. J. Am. Chem. Soc. 2002, 124, 13554. doi: 10.1021/ja020589x
												 doi: 10.1021/ja020589x
											
										
				Gilli, P.; Bertolasi, V.; Pretto, L.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 2004, 126, 3845. doi: 10.1021/ja030213z
												 doi: 10.1021/ja030213z
											
										
				Srinivasan, R.; Feenstra, J. S.; Park, S. T.; Xu, S.; Zewail, A. H. J. Am. Chem. Soc. 2004, 126, 2266. doi: 10.1021/ja031927c
												 doi: 10.1021/ja031927c
											
										
				Sobczyk, L.; Grabowski, S. J.; Krygowski, T. M. Chem. Rev. 2005, 105, 3513. doi: 10.1002/chin.200603277
												 doi: 10.1002/chin.200603277
											
										
				Sanz, P.; Mó, O.; Yáñez, M.; Elguero, J. J. Phys. Chem. A 2007, 111, 3585. doi: 10.1021/jp067514q
												 doi: 10.1021/jp067514q
											
										
				Sanz, P.; Mó, O.; Yáñez, M.; Elguero, J. Chem. Eur. J. 2008, 14, 4225. doi: 10.1002/chem.200701827
												 doi: 10.1002/chem.200701827
											
										
				Alkorta, I.; Elguero, J.; Mó, O.; Yáñez, M.; Del Bene, J. E. Mol. Phys. 2004, 102, 2563. doi: 10.1080/00268970412331292885
												 doi: 10.1080/00268970412331292885
											
										
				Alkorta, I.; Elguero, J.; Mó, O.; Yáñez, M.; Del Bene, J. E. Chem. Phys. Lett. 2005, 411, 411. doi: 10.1016/j.cplett.2005.06.061
												 doi: 10.1016/j.cplett.2005.06.061
											
										
				Beck, J. F.; Mo, Y. J. Comput. Chem. 2007, 28, 455. doi: 10.1002/jcc.20523
												 doi: 10.1002/jcc.20523
											
										
				Grabowski, S. J. J. Phys. Org. Chem. 2003, 16, 797. doi: 10.1002/poc.675
												 doi: 10.1002/poc.675
											
										
				Grabowski, S. J. J. Mol. Struct. 2001, 562, 137. doi: 10.1016/S0022-2860(00)00863-2
												 doi: 10.1016/S0022-2860(00)00863-2
											
										
				Grabowski, S. J. J. Phys. Chem. A 2001, 105, 10739. doi: 10.1021/jp011819h
												 doi: 10.1021/jp011819h
											
										
				Grabowski, S. J. J. Phys. Org. Chem. 2004, 17, 18. doi: 10.1002/poc.685
												 doi: 10.1002/poc.685
											
										
				Wang, C. S.; Zhang, Y.; Gao, K.; Yang, Z. Z. J. Chem. Phys. 2005, 123, 024307. doi: 10.1063/1.1979471
												 doi: 10.1063/1.1979471
											
										
				Jablonski, M.; Kaczmarek, A.; Sadlej, A. J. J. Phys. Chem. A 2006, 110, 10890. doi: 10.1021/jp062759o
												 doi: 10.1021/jp062759o
											
										
				Liu, T.; Li, H.; Huang, M. B.; Duan, Y.; Wang, Z. X. J. Phys. Chem. A 2008, 112, 5436. doi: 10.1021/jp712052e
												 doi: 10.1021/jp712052e
											
										
				Deshmukh, M. M.; Gadre, S. R. J. Phys. Chem. A 2009, 113, 7927. doi: 10.1021/jp9031207
												 doi: 10.1021/jp9031207
											
										
				Gilli, P.; Pretto, L.; Bertolasi, V.; Gilli, G. Acc. Chem. Res. 2009, 42, 33. doi: 10.1021/ar800001k
												 doi: 10.1021/ar800001k
											
										
				Wendler, K.; Thar, J.; Zahn, S.; Kirchner, B. J. Phys. Chem. A 2010, 114, 9529. doi: 10.1021/jp103470e
												 doi: 10.1021/jp103470e
											
										
Valence Bond Theory; Cooper, D. L. Ed. ; Elsevier: Amsterdam, 2002.
Gallup, G. A. Valence Bond Methods: Theory and Applications; Cambridge University Press: New York, 2002.
Shaik, S. S. ; Hiberty, P. C. A Chemist's Guide to Valence Bond Theory; Wiley: Hoboken, New Jersey, 2008.
				Wu, W.; Su, P.; Shaik, S.; Hiberty, P. C. Chem. Rev. 2011, 111, 7557. doi: 10.1021/cr100228r
												 doi: 10.1021/cr100228r
											
										
				Mo, Y.; Peyerimhoff, S. D. J. Chem. Phys. 1998, 109, 1687. doi: 10.1063/1.476742
												 doi: 10.1063/1.476742
											
										
				Mo, Y.; Song, L.; Lin, Y. J. Phys. Chem. A 2007, 111, 8291. doi: 10.1021/jp0724065
												 doi: 10.1021/jp0724065
											
										
Mo, Y. In The Chemical Bond: Fundamental Aspects of Chemical Bonding; Frenking, G., Shaik, S., Eds. ; Wiley-VCH: Weinheim, Germany, 2014, p 199. doi: 10.1002/9783527664696.ch6
				Rozas, I. Phys. Chem. Chem. Phys. 2007, 9, 2782. doi: 10.1039/B618225A
												 doi: 10.1039/B618225A
											
										
				Estácio, S. G.; Cabral do Couto, P.; Costa Cabral, B. J.; Minas da Piedade, M. E.; Martinho Sim es, J. A. J. Phys. Chem. A 2004, 108, 10834. doi: 10.1021/jp0473422
												 doi: 10.1021/jp0473422
											
										
				Lipkowskia, P.; Kolla, A.; Karpfenb, A.; Wolschannb, P. Chem. Phys. Lett. 2002, 360, 256. doi: 10.1016/S0009-2614(02)00830-8
												 doi: 10.1016/S0009-2614(02)00830-8
											
										
				Woodford, J. N. J. Phys. Chem. A 2007, 111, 8519. doi: 10.1021/jp073098d
												 doi: 10.1021/jp073098d
											
										
				Latajka, Z.; Scheiner, S. J. Phys. Chem. 1994, 96, 9764. doi: 10.1021/j100203a035
												 doi: 10.1021/j100203a035
											
										
				Scheiner, S.; Kar, T.; Čuma, M. J. Phys. Chem. A 1997, 101, 5901. doi: 10.1021/jp9713874
												 doi: 10.1021/jp9713874
											
										
				González, L.; Mó, O.; Yáñez, M. J. Phys. Chem. A 1997, 101, 9710. doi: 10.1021/ jp970735z
												 doi: 10.1021/jp970735z
											
										
				Zhang, Y.; Wang, C. S. J. Comput. Chem. 2009, 30, 1251. doi: 10.1002/jcc.21141
												 doi: 10.1002/jcc.21141
											
										
				Rozas, I.; Alkorta, I.; Elguero, J. J. Phys. Chem. A 2001, 105, 10462. doi: 10.1021/jp013125e
												 doi: 10.1021/jp013125e
											
										
				Deshmukh, M. M.; Gadre, S. R.; Bartolotti, L. J. J. Phys. Chem. A 2006, 110, 12519. doi: 10.1021/jp065836o
												 doi: 10.1021/jp065836o
											
										
Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, U. K., 1990.
				Pacios, L. F. J. Phys. Chem. A 2004, 108, 1177. doi: 10.1021/jp030978t
												 doi: 10.1021/jp030978t
											
										
				LaPointe, S. M.; Farrag, S.; Bohrquez, H. J.; Boyd, R. J. J. Phys. Chem. B 2009, 113, 10957. doi: 10.1021/jp903635h
												 doi: 10.1021/jp903635h
											
										
				Mo, Y. J. Phys. Chem. A 2012, 116, 5240. doi: 10.1021/jp3029769
												 doi: 10.1021/jp3029769
											
										
				Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899. doi: 10.1021/cr00088a005
												 doi: 10.1021/cr00088a005
											
										
Weinhold, F.; Landis, C. Valency and Bonding; Cambridge University Press: Cambridge, England, 2005.
				Pophristic, V.; Goodman, L. Nature 2001, 411, 565. doi: 10.1038/35079036
												 doi: 10.1038/35079036
											
										
				Bickelhaupt, F. M.; Baerends, E. J. Angew. Chem. Int. Ed. 2003, 42, 4183. doi: 10.1002/anie.200350947
												 doi: 10.1002/anie.200350947
											
										
				Weinhold, F. Angew. Chem. Int. Ed. 2003, 42, 4188. doi: 10.1002/anie.200351777
												 doi: 10.1002/anie.200351777
											
										
				Mo, Y.; Gao, J. Acc. Chem. Res. 2007, 40, 113. doi: 10.1021/ar068073w
												 doi: 10.1021/ar068073w
											
										
				Mo, Y.; Wu, W.; Song, L.; Lin, M.; Zhang, Q.; Gao, J. Angew. Chem. Int. Ed. 2004, 43, 1986. doi: 10.1002/anie.200352931
												 doi: 10.1002/anie.200352931
											
										
				Edmiston, C. Theochem 1988, 46, 331. doi: 10.1016/0166-1280(88)80267-7
												 doi: 10.1016/0166-1280(88)80267-7
											
										
				Mo, Y.; Zhang, Q. J. Mol. Struct.(Theochem) 1995, 357, 171. doi: 10.1016/0166-1280(95)04274-A
												 doi: 10.1016/0166-1280(95)04274-A
											
										
				Song, L.; Mo, Y.; Zhang, Q.; Wu, W. J. Comput. Chem. 2005, 26, 514. doi: 10.1002/jcc.20187
												 doi: 10.1002/jcc.20187
											
										
Song, L. ; Chen, Z. ; Ying, F. ; Song, J. ; Chen, X. ; Su, P. ; Mo, Y. ; Zhang, Q. ; Wu, W. XMVB 2. 0: An ab initio Non-orthogonal Valence Bond Program; Xiamen University: Xiamen, 2012.
				Mulliken, R. S.; Parr, R. G. J. Chem. Phys. 1951, 19, 1271. doi: 10.1063/1.1748011
												 doi: 10.1063/1.1748011
											
										
				Sovers, O. J.; Kern, C. W.; Pitzer, R. M.; Karplus, M. J. Chem. Phys. 1968, 49, 2592. doi: 10.1063/1.1681576
												 doi: 10.1063/1.1681576
											
										
				Stoll, H.; Preuss, H. Theor. Chim. Acta 1977, 46, 11. doi: 10.1007/BF02401407
												 doi: 10.1007/BF02401407
											
										
				Kollmar, H. J. Am. Chem. Soc. 1979, 101, 4832. doi: 10.1021/ja00511a009
												 doi: 10.1021/ja00511a009
											
										
				Mehler, E. L. J. Chem. Phys. 1977, 67, 2728. doi: 10.1063/1.435187
												 doi: 10.1063/1.435187
											
										
				Gianinetti, E.; Raimondi; Tornaghi, E. Int. J. Quantum Chem. 1996, 60, 157. doi: 10.1002/(SICI)1097-461X(1996)60:1<157::AID-QUA17>3.0.CO;2-C
												 doi: 10.1002/(SICI)1097-461X(1996)60:1<157::AID-QUA17>3.0.CO;2-C
											
										
				Mo, Y. J. Chem. Phys. 2003, 119, 1300. doi: 10.1063/1.1580094
												 doi: 10.1063/1.1580094
											
										
				Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. J.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347. doi: 10.1002/jcc.540141112
												 doi: 10.1002/jcc.540141112
											
										
				Andersson, M. P.; Uvdal, P. J. Phys. Chem. A 2005, 109, 2937. doi: 10.1021/jp045733a
												 doi: 10.1021/jp045733a
											
										
				Boys, S. F. Rev. Mod. Phys. 1960, 32, 296. doi: 10.1103/RevModPhys.32.296
												 doi: 10.1103/RevModPhys.32.296
											
										
				Edmiston, C.; Ruedenberg, K. Rev. Mod. Phys. 1963, 35, 457. doi: 10.1103/RevModPhys.35.457
												 doi: 10.1103/RevModPhys.35.457
											
										
				Pipek, J.; Mezey, P. G. J. Chem. Phys. 1989, 90, 4916. doi: 10.1063/1.456588
												 doi: 10.1063/1.456588
											
										
				Ichikawa, M. Acta Cryst. 1978, B34, 2074. doi: 10.1107/S0567740878007475
												 doi: 10.1107/S0567740878007475
											
										
				Steiner, T.; Saenger, W. Acta Cryst. 1994, B50, 348. doi: 10.1107/S0108768193011966
												 doi: 10.1107/S0108768193011966
											
										
				Mo, Y.; Gao, J.; Peyerimhoff, S. D. J. Chem. Phys. 2000, 112, 5530. doi: 10.1063/1.481185
												 doi: 10.1063/1.481185
											
										
				Mo, Y.; Bao, P.; Gao, J. Phys. Chem. Chem. Phys. 2011, 13, 6760. doi: 10.1039/c0cp02206c
												 doi: 10.1039/c0cp02206c
											
										
				Mó, O.; Yánez, M.; Elguero, J. J. Chem. Phys. 1992, 97, 6628. doi: 10.1063/1.463666
												 doi: 10.1063/1.463666
											
										
				Espinosa, E.; Molins, E.; Lecomte, C. Chem. Phys. Lett. 1998, 285, 170. doi: 10.1016/S0009-2614(98)00036-0
												 doi: 10.1016/S0009-2614(98)00036-0
											
										
				Espinosa, E.; Molins, E. J. Chem. Phys. 2000, 113, 5686. doi: 10.1063/1.1290612
												 doi: 10.1063/1.1290612
											
										
				Koch, U.; Popelier, P. L. A. J. Phys. Chem. A 1995, 99, 9747. doi: 10.1021/j100024a016
												 doi: 10.1021/j100024a016
											
										
				Popelier, P. L. A. J. Phys. Chem. A 1998, 102, 1873. doi: 10.1021/jp9805048
												 doi: 10.1021/jp9805048
											
										
						
						
						
	                Yang Qin , Jiangtian Li , Xuehao Zhang , Kaixuan Wan , Heao Zhang , Feiyang Huang , Limei Wang , Hongxun Wang , Longjie Li , Xianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826
Xiangyang Ji , Yishuang Chen , Peng Zhang , Shaojia Song , Jian Liu , Weiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719
Fangzhou Wang , Wentong Gao , Chenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305
Yunkang Tong , Haiqiao Huang , Haolan Li , Mingle Li , Wen Sun , Jianjun Du , Jiangli Fan , Lei Wang , Bin Liu , Xiaoqiang Chen , Xiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663
Junmeng Luo , Qiongqiong Wan , Suming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836
Shan-Shan Li , Juan Luo , Shu-Nuo Liang , Dan-Na Chen , Li-Ning Chen , Cheng-Xue Pan , Peng-Ju Xia . Efficient and regioselective C=S bond difunctionalization through a three-component radical relay strategy. Chinese Chemical Letters, 2025, 36(6): 110424-. doi: 10.1016/j.cclet.2024.110424
Cong-Bin Ji , Ding-Xiong Xie , Mei Chen , Ye-Ying Lan , Bao-Hua Zhang , Ji-Ying Yang , Zheng-Hui Kang , Shu-Jie Chen , Yu-Wei Zhang , Yun-Lin Liu . Green synthesis of 2-trifluoromethylquinoline skeletons via organocatalytic N-[(α-trifluoromethyl)vinyl]isatins CN bond activation. Chinese Chemical Letters, 2025, 36(7): 110598-. doi: 10.1016/j.cclet.2024.110598
Qiongqiong Wan , Yanan Xiao , Guifang Feng , Xin Dong , Wenjing Nie , Ming Gao , Qingtao Meng , Suming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775
Yi Luo , Lin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648
Guoju Guo , Xufeng Li , Jie Ma , Yongjia Shi , Jian Lv , Daoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024
Yang Li , Yanan Dong , Zhihong Wei , Changzeng Yan , Zhen Li , Lin He , Yuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206
Yubang Liu , Jiaxin Lin , Huayu Liang , Yinwu Li , Zhuofeng Ke . Computational insights into three-centre four-electron bridging hydride bond in boryl type PBP-M dihydride complexes✰ ✩. Chinese Chemical Letters, 2025, 36(5): 110291-. doi: 10.1016/j.cclet.2024.110291
Peng Wang , Jianjun Wang , Ni Song , Xin Zhou , Ming Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748
Aiping Liang , Chaolin Li , Chen Ling , Hengpan Duan , Wenhui Wang . CoTiO3 for highly efficient peroxymonosulfate activation: The critical role of Co–O–Ti bond for rapid redox cycles of Co2+/Co3+. Chinese Chemical Letters, 2025, 36(10): 110788-. doi: 10.1016/j.cclet.2024.110788
Wenjie Jiang , Zhixiang Zhai , Xiaoyan Zhuo , Jia Wu , Boyao Feng , Tianqi Yu , Huan Wen , Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519
Guo Yang , Kai Li , Hanshi Qu , Jianbing Zhu , Chunyu Ru , Meiling Xiao , Wei Xing , Changpeng Liu . Tailoring OH* adsorption strength on Ni/NbOx for boosting alkaline hydrogen oxidation reaction via oxygen vacancy. Chinese Chemical Letters, 2025, 36(7): 110150-. doi: 10.1016/j.cclet.2024.110150
Zhe Wang , Li-Peng Hou , Qian-Kui Zhang , Nan Yao , Aibing Chen , Jia-Qi Huang , Xue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570
Boyuan Liu , Zixu Liu , Ping Wang , Yu Zhang , Haibing He , Tian Yin , Jingxin Gou , Xing Tang . Nanomedicine-based targeting delivery systems for peritoneal cavity localized therapy: A promising treatment of ovarian cancer and its peritoneal metastasis. Chinese Chemical Letters, 2025, 36(6): 110229-. doi: 10.1016/j.cclet.2024.110229
Haiyan Yin , Abdusalam Ablez , Zhuangzhuang Wang , Weian Li , Yanqi Wang , Qianqian Hu , Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560
Yue Jin , Kun Dai , Lu Song , Xiaolei Zuo , Guangbao Yao , Min Li . Valence-programmed RNA origami for potent innate immune activation. Chinese Chemical Letters, 2025, 36(10): 110744-. doi: 10.1016/j.cclet.2024.110744