Citation: YI Yanhui, WANG Xunxun, WANG Li, YAN Jinhui, ZHANG Jialiang, GUO Hongchen. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Physico-Chimica Sinica, ;2018, 34(3): 247-255. doi: 10.3866/PKU.WHXB201708171 shu

Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds

  • Corresponding author: YI Yanhui, yiyanhui@dlut.edu.cn GUO Hongchen, hongchenguo@163.com
  • Received Date: 22 June 2017
    Revised Date: 8 August 2017
    Accepted Date: 10 August 2017
    Available Online: 17 March 2017

    Fund Project: The project was supported by the Natural Science Foundation of China 21503032The project was supported by the Natural Science Foundation of China (21503032) and China Postdoctoral Science Foundation (2015M580220, 2016T90217)China Postdoctoral Science Foundation 2016T90217China Postdoctoral Science Foundation 2015M580220

  • Nitriles are very important for the synthesis of fine chemicals and medicines. However, many nitriles are not widely available, as their synthesis processes pose a serious risk to the environment. Herein, we report that a spontaneous CH3OH/NH3 coupling reaction can directly synthesize N, N-dimethyl cyanamide[(CH3)2NCN], amino acetonitrile [NH2CH2CN], and N, N-dimethyl amino acetonitrile [(CH3)2NCH2CN], when a mixture of methanol and ammonia is transferred into the plasma state via a dielectric barrier discharge. The effects of the plasma reactor configuration, discharge conditions, reaction conditions, and packing materials on the methanol conversion as well as the product selectivity were systematically investigated. Experimental results indicate that, under optimized conditions, a nitrile compound selectivity of 22.1% with a methanol conversion of 51.5% could be achieved. Analysis by optical emission spectroscopy indicates that the C≡N species in CH3OH/NH3 plasma could be a key reactive intermediate aiding in the synthesis of nitrile compounds. The CH3OH/NH3 plasma coupling reaction process is an environment-friendly methodology for the synthesis of (CH3)2NCN, NH2CH2CN, and (CH3)2NCH2CN, and is a potential novel pathway for the synthesis of fine chemicals like methanol and ammonia.
  • 加载中
    1. [1]

      Fatiadi, A. J. Preparation and Synthetic Applications of Cyano Compounds; Wiley: New York, 1983.

    2. [2]

      Fleming, F. F.; Yao, L; Ravikumar, P. C.; Funk, L; Shook, B. C. J. Med. Chem. 2010, 53, 7902. doi: 10.1021/jm100762r  doi: 10.1021/jm100762r

    3. [3]

      Sundermeier, M.; Zapf, A.; Mytyala, S. Baumann, W.; Sans, J.; Weiss, S.; Beller, M. J. Chem. Eur. 2003, 9, 1828. doi: 10.1002/chem.200390210  doi: 10.1002/chem.200390210

    4. [4]

      Movassaghi, M.; Hill, M. D. Nat. Protoc. 2007, 2, 2018. doi: 10.1038/nprot.2007.280  doi: 10.1038/nprot.2007.280

    5. [5]

      Yang, J.; Karver, M. R.; Li, W.; Sahu, W.; Devaraj, N. K. Angew. Chem. Int. Ed.2012, 51, 5222. doi: 10.1002/anie.201201117  doi: 10.1002/anie.201201117

    6. [6]

      Yu, S.; Xiong, M.; Xie, X.; Liu, Y. Angew. Chem. Int. Ed. 2014, 53, 11596. doi: 10.1002/anie.201407221  doi: 10.1002/anie.201407221

    7. [7]

      Lu, S.; Wang, J.; Cao, X.; Li, X.; Gu, H. Chem. Commun. 2014, 50, 3512. doi: 10.1039/C3CC48596J  doi: 10.1039/C3CC48596J

    8. [8]

      Kim, J.; Hong, S. H. Org. Lett. 2014, 16, 4404. doi: 10.1021/ol501835t  doi: 10.1021/ol501835t

    9. [9]

      Fleming, F. F. Nat. Prod. Rep. 1999, 16, 597. doi: 10.1039/A804370A  doi: 10.1039/A804370A

    10. [10]

      Dornan, P.; Rowley, C. N.; Priem, J.; Barry, S. T.; Burchell, T. J.; Woo, T. K.; Richeson, D. S. Chem. Commun. 2008, 3645. doi: 10.1039/B803732A  doi: 10.1039/B803732A

    11. [11]

      Lin, L. L.; Zhou, W.; Gao, R.; Yao, S.; Zhang, X.; Xu, W.; Zheng, S.; Jiang, Z.; Yu, Q.; Li, Y. W.; Shi, C.; Wen, X. D.; Ma, D. Nature 2017, 544, 80. doi: 10.1038/nature21672  doi: 10.1038/nature21672

    12. [12]

      Natte, K.; Neumann, H.; Beller, M.; Jagadeesh, R. V. Angew. Chem. Int. Ed. 2017, 56, 6384. doi: 10.1002/anie.201612520  doi: 10.1002/anie.201612520

    13. [13]

      Khare, R.; Liu, Z. H.; Han, Y.; Bhan, A. J. Catal. 2017, 348, 300. doi: 10.1016/j.jcat.2017.02.022  doi: 10.1016/j.jcat.2017.02.022

    14. [14]

      Hwang, A.; Kumar, M.; Rimer, J. D.; Bhan, A. J. Catal. 2017, 346, 154. doi: 10.1016/j.jcat.2016.12.003  doi: 10.1016/j.jcat.2016.12.003

    15. [15]

      Hu, S.; Zhang, Q.; Yin, Q.; Zhang, Y. F.; Gong, Y. J.; Zhang, Y.; Wu, Z. J.; Dou, T. Acta Phys. -Chim. Sin. 2015, 31, 1374.  doi: 10.3866/PKU.WHXB201504302
       

    16. [16]

      Zhang, J.; Yuan, Q. C.; Zhang, J. L.; Li, T.; Guo, H. C. Chem. Commun. 2013, 49, 10106. doi: 10.1039/C3CC45877F).  doi: 10.1039/C3CC45877F

    17. [17]

      Wang, L.; Yi, Y. H.; Zhao, Y.; Zhang, R.; Zhang, J. L.; Guo, H. C. ACS Catal. 2015, 5, 4167. doi: 10.1021/acscatal.5b00728  doi: 10.1021/acscatal.5b00728

    18. [18]

      Wang, L.; Zhao, Y.; Liu, C. Y.; Gong, W. M.; Guo, H. C. Chem. Commun. 2013, 49, 3787. doi: 10.1039/C3CC41301B  doi: 10.1039/C3CC41301B

    19. [19]

      Sun, S. Q.; Yi, Y. H.; Wang, L.; Zhang, J. L.; Guo, H. C. Acta Phys. Chim. Sin.2017, 33, 1123.  doi: 10.3866/PKU.WHXB201703301
       

    20. [20]

      Fan, J. X.; Yu, H. B; Zang, J. Z.; Xing, S. J. Industrial Catalysis 2013, 21 (5), 7.
       

    21. [21]

      Qiang, L. P.; Chen, Y. B.; Cao, W.; Zhao, S. F. J. Fine and Specialty Chemical 2012, 20, 15.
       

    22. [22]

      Shadrin, D. V.; Daut, V. A.; Ozhegov, A. I.; Gusev, A. L.; Avramenko, EH.V.RU 2198887-C1, 2003.

    23. [23]

      Pan, W. X.; Feng, J.; Wen, T.; Wu, X. H.: Method for One-step Synthetising Nitrile and Amino-acetic Acid by Methanol Ammoniation Dehydrogenation. CN 101597240 A, 2009

    24. [24]

      Wang, Z. M. The synthesis of 2, 6-Dimethylpyridine. M. S. Dissertation, Zhejiang University, Hangzhou, 2003. 

    25. [25]

      Muller, U.; Schulz, G. J. Chem. Phys. 1992, 96, 5924. doi: 10.1063/1.462661  doi: 10.1063/1.462661

    26. [26]

      Worsley, M. A.; Bent, S. F.; Fuller, N. C. M.; Dalton, T. J. Appl. Phys. 2006, 100 (8), 083301. doi: 10.1063/1.2358303  doi: 10.1063/1.2358303

    27. [27]

      Petrović. Z. L.; Phelps, A. V. Phys. Rev. E 2009, 80, 016408. doi: 10.1103/PhysRevE.80.016408  doi: 10.1103/PhysRevE.80.016408

    28. [28]

      Watson, J. K. G.; Majewski, W. A.; Glownia, J. H. J. Mol. Spectrosc. 1986, 115, 82. doi: 10.1016/0022-2852(86)90277-8  doi: 10.1016/0022-2852(86)90277-8

    29. [29]

      Herzberg, G.; Ramsay, D. A. J. Chem. Phys. 1952, 20, 347 doi: 10.1063/1.1700418  doi: 10.1063/1.1700418

    30. [30]

      Vandevelde, T.; Nesladek, M.; Ouaeyhaegens, C.; Stals, L. Thin Solid Films 1996, 290-291, 143.doi: 10.1016/S0040-6090(96)09189-4  doi: 10.1016/S0040-6090(96)09189-4

    31. [31]

      Glarborg, P.; Miller, J. A.; Kee, R. J. Combust. Flame 1986, 65, 177. doi: 10.1016/0010-2180(86)90018-0  doi: 10.1016/0010-2180(86)90018-0

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    5. [5]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    9. [9]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    12. [12]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    13. [13]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    14. [14]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    15. [15]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    16. [16]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    17. [17]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    18. [18]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    19. [19]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    20. [20]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

Metrics
  • PDF Downloads(11)
  • Abstract views(283)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return