Citation: ZHANG Yujing, DAI Xingchao, WANG Hongli, SHI Feng. Catalytic Synthesis of Formamides with Carbon Dioxide and Amines[J]. Acta Physico-Chimica Sinica, ;2018, 34(8): 845-857. doi: 10.3866/PKU.WHXB201701081 shu

Catalytic Synthesis of Formamides with Carbon Dioxide and Amines


  • Author Bio:


    SHI Feng completed his Ph.D. studies in catalysis at LICP, CAS in 2004. After a three-year postdoctoral research in LIKAT in Germany, he joined the faculty of LICP in 2008 as Hundred Talents Program of CAS. Since 2016 SHI Feng is the deputy director of the State Key Laboratory for Oxo Synthesis and Selective Oxidation. His research focuses on nano-catalysis in fine chemical synthesis and C1 chemistry
  • Corresponding author: SHI Feng, fshi@licp.cas.cn
  • Received Date: 30 November 2017
    Revised Date: 29 December 2017
    Accepted Date: 29 December 2017
    Available Online: 8 August 2018

    Fund Project: the National Natural Science Foundation of China 91745106the National Natural Science Foundation of China 21633013The project was supported by the National Natural Science Foundation of China (21633013, 91745106) and National Key Research and Development Program of China (2017YFA0403103)National Key Research and Development Program of China 2017YFA0403103

  • Carbon dioxide is a green C1 resource that can be efficiently recycled by catalytic transformation into value-added chemicals. Formamides are important intermediates and solvents that are used extensively in pharmaceutical, daily-chemical, and petrochemical industry. Therefore, it is worthwhile to synthesize formamides with CO2 and amines. In this review, the main advancements in the synthesis of formamides by using CO2 as the C1 feedstock with noble metal catalysts (Ir, Pd, Pt, Ru, Rh, etc.), non-noble metal catalysts (Ni, Mo, Cu, Fe, Co, Zn, Al, etc.), organocatalysts, and catalyst-free systems have been summarized. In addition, the role of the reducing agents such as H2, silanes, and boranes involved in these transformations has also been reviewed. In addition, the reaction mechanisms with the different catalyst systems have been discussed.
  • 加载中
    1. [1]

      Aresta, M.; Dibenedetto, A. Dalton Trans. 2007, 2975. doi: 10.1039/B700658F  doi: 10.1039/B700658F

    2. [2]

      Mikkelsen, M.; J rgensen, M.; Krebs, F. C. Energ. Environ. Sci. 2010, 3, 43. doi: 10.1039/B912904A  doi: 10.1039/B912904A

    3. [3]

      Huang, K.; Sun, C.-L.; Shi, Z.-J. Chem. Soc. Rev. 2011, 40, 2435. doi:10.1039/C0CS00129E  doi: 10.1039/C0CS00129E

    4. [4]

      Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. Chem. Soc. Rev. 2014, 43, 631. doi: 10.1039/C3CS60323G  doi: 10.1039/C3CS60323G

    5. [5]

      Riduan, S. N.; Zhang, Y. Dalton Trans. 2010, 39, 3347. doi: 10.1039/B920163G  doi: 10.1039/B920163G

    6. [6]

      Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. doi: 10.1039/C1CS15008A  doi: 10.1039/C1CS15008A

    7. [7]

      Thenert, K.; Beydoun, K.; Wiesenthal, J.; Leitner, W.; Klankermayer, J. Angew. Chem. Int. Ed. 2016, 55, 12266. doi: 10.1002/anie.201606427  doi: 10.1002/anie.201606427

    8. [8]

      Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2013, 114, 1709. doi: 10.1021/cr4002758  doi: 10.1021/cr4002758

    9. [9]

      Gao, P.; Li, S.; Bu, X.; Dang, S.; Liu, Z.; Wang, H.; Zhong, L.; Qiu, M.; Yang, C.; Cai, J. Nat. Chem. 2017, 9, 1019. doi:10.1038/nchem.2794  doi: 10.1038/nchem.2794

    10. [10]

      Kothandaraman, J.; Czaun, M.; Goeppert, A.; Haiges, R.; Jones, J. P.; May, R. B.; Prakash, G.; Olah, G. A. ChemSusChem 2015, 8, 1442. doi: 10.1002/cssc.201403458  doi: 10.1002/cssc.201403458

    11. [11]

      Li, C. W.; Ciston, J.; Kanan, M. W. Nature 2014, 508, 504. doi: 10.1038/nature13249  doi: 10.1038/nature13249

    12. [12]

      Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933. doi: 10.1038/ncomms6933  doi: 10.1038/ncomms6933

    13. [13]

      Lian, Z.; Nielsen, D. U.; Lindhardt, A. T.; Daasbjerg, K.; Skrydstrup, T. Nat. Commun. 2016, 7, 13782. doi: 10.1038/ncomms13782  doi: 10.1038/ncomms13782

    14. [14]

      Song, Q. -W.; Zhou, Z. -H.; He, L. -N. Green Chem. 2017, 19, 3707. doi: 10.1039/C7GC00199A  doi: 10.1039/C7GC00199A

    15. [15]

      Arlt, D.; Klein, G. Preparation of Nitriles from Formamides: U.S. Patent 4, 419, 297, 1983.
       

    16. [16]

      Chen, B.-C.; Bednarz, M. S.; Zhao, R.; Sundeen, J. E.; Chen, P.; Shen, Z.; Skoumbourdis, A. P.; Barrish, J. C. Tetrahedron Lett. 2000, 41, 5453. doi: 10.1016/S0040-4039(00)00910-2  doi: 10.1016/S0040-4039(00)00910-2

    17. [17]

      Faraj, M. K. Synthesis of Isocyanate Precursors from Primary Formamides: U.S. Patent 5, 155, 267, 1992.
       

    18. [18]

      Grant, H. G.; Summers, L. A. Aust. J. Chem. 1980, 33, 613. doi: 10.1071/CH9800613  doi: 10.1071/CH9800613

    19. [19]

      Han, Y.; Cai, L. Tetrahedron Lett. 1997, 38, 5423. doi: 10.1016/S0040-4039(97)01206-9  doi: 10.1016/S0040-4039(97)01206-9

    20. [20]

      Jackson, A.; Meth-Cohn, O. J. Chem. Soc., Chem. Commun. 1995, 1319. doi: 10.1039/C39950001319  doi: 10.1039/C39950001319

    21. [21]

      Kobayashi, K.; Nagato, S.; Kawakita, M.; Morikawa, O.; Konishi, H. Chem. Lett. 1995, 24, 575. doi: 10.1246/cl.1995.575  doi: 10.1246/cl.1995.575

    22. [22]

      Pettit, G.; Kalnins, M.; Liu, T.; Thomas, E.; Parent, K. J. Org. Chem. 1961, 26, 2563. doi: 10.1021/jo01351a623  doi: 10.1021/jo01351a623

    23. [23]

      Kobayashi, S.; Yasuda, M.; Hachiya, I. Chem. Lett. 1996, 25, 407. doi: 10.1246/cl.1996.407  doi: 10.1246/cl.1996.407

    24. [24]

      Downie, I. M.; Earle, M. J.; Heaney, H.; Shuhaibar, K. F. Tetrahedron 1993, 49, 4015. doi: 10.1016/S0040-4020(01)89915-4  doi: 10.1016/S0040-4020(01)89915-4

    25. [25]

      Kobayashi, S.; Nishio, K. J. Org. Chem. 1994, 59, 6620. doi: 10.1021/jo00101a021  doi: 10.1021/jo00101a021

    26. [26]

      Affan, M. A.; Jessop, P. G. Inorg. Chem. 2017, 56, 7301. doi: 10.1021/acs.inorgchem.7b01242  doi: 10.1021/acs.inorgchem.7b01242

    27. [27]

      Haynes, P.; Slaugh, L. H.; Kohnle, J. F. Tetrahedron Lett. 1970, 11, 365. doi: 10.1016/0040-4039(70)80086-7  doi: 10.1016/0040-4039(70)80086-7

    28. [28]

      Schreiner, S.; James, Y. Y.; Vaska, L. Inorg. Chim. Acta 1988, 147, 139. doi: 10.1039/C39880000602  doi: 10.1039/C39880000602

    29. [29]

      Vaska, L.; Schreiner, S.; Felty, R. A.; Yu, J. Y. J. Mol. Catal. 1989, 52, L11. doi: 10.1016/0304-5102(89)80020-3  doi: 10.1016/0304-5102(89)80020-3

    30. [30]

      Bi, Q. -Y.; Lin, J. -D.; Liu, Y. -M.; Xie, S. -H.; He, H. -Y.; Cao, Y. Chem. Commun. 2014, 50, 9138. doi: 10.1039/C4CC02973A  doi: 10.1039/C4CC02973A

    31. [31]

      Kudo, K.; Phala, H.; Sugita, N.; Takezaki, Y. Chem. Lett. 1977, 6, 1495. doi: 10.1246/cl.1977.1495  doi: 10.1246/cl.1977.1495

    32. [32]

      Morimoto, Y.; Fujiwara, Y.; Taniguchi, H.; Hori, Y.; Nagano, Y. Tetrahedron Lett. 1986, 27, 1809. doi: 10.1016/S0040-4039(00)84381-6  doi: 10.1016/S0040-4039(00)84381-6

    33. [33]

      Cui, X.; Zhang, Y.; Deng, Y.; Shi, F. Chem. Commun. 2014, 50, 189. doi: 10.1039/C3CC46427J  doi: 10.1039/C3CC46427J

    34. [34]

      Molla, R. A.; Bhanja, P.; Ghosh, K.; Islam, S. S.; Bhaumik, A.; Islam, S. M. ChemCatChem 2017, 9, 1939. doi: 10.1039/C3CC46427J  doi: 10.1039/C3CC46427J

    35. [35]

      Zhang, Y.; Wang, H.; Yuan, H.; Shi, F. ACS Sustainable Chem. Eng. 2017, 5, 5758. doi: 10.1021/acssuschemeng.7b00363  doi: 10.1021/acssuschemeng.7b00363

    36. [36]

      Ju, P.; Chen, J.; Chen, A.; Chen, L.; Yu, Y. ACS Sustainable Chem. Eng. 2017, 5, 2516. doi: 10.1021/acssuschemeng.6b02865  doi: 10.1021/acssuschemeng.6b02865

    37. [37]

      Schreiner, S.; James, Y. Y.; Vaska, L. J. Chem. Soc., Chem. Commun. 1988, 602. doi: 10.1039/C39880000602  doi: 10.1039/C39880000602

    38. [38]

      Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1994, 116, 8851. doi: 10.1021/ja00098a072  doi: 10.1021/ja00098a072

    39. [39]

      Kröcher, O.; Köppel, R. A.; Baiker, A. Chem. Commun. 1997, 453. doi: 10.1039/A608150I  doi: 10.1039/A608150I

    40. [40]

      Munshi, P.; Heldebrant, D. J.; McKoon, E. P.; Kelly, P. A.; Tai, C. -C.; Jessop, P. G. Tetrahedron Lett. 2003, 44, 2725. doi: 10.1016/S0040-4039(03)00384-8  doi: 10.1016/S0040-4039(03)00384-8

    41. [41]

      Schmid, L.; Canonica, A.; Baiker, A. Appl. Catal., A: Chem. 2003, 255, 23. doi: 10.1016/S0926-860X(03)00641-0  doi: 10.1016/S0926-860X(03)00641-0

    42. [42]

      Rohr, M.; Grunwaldt, J.-D.; Baiker, A. J. Mol. Catal. A: Chem. 2005, 226, 253. doi: 10.1016/j.molcata.2004.10.037  doi: 10.1016/j.molcata.2004.10.037

    43. [43]

      Rohr, M.; Grunwaldt, J.-D.; Baiker, A. J. Catal. 2005, 229, 144. doi: 10.1016/j.jcat.2004.09.026  doi: 10.1016/j.jcat.2004.09.026

    44. [44]

      Zhang, L.; Han, Z.; Zhao, X.; Wang, Z.; Ding, K. Angew. Chem. Int. Ed., 2015, 54, 6186. doi: 10.1002/anie.201500939  doi: 10.1002/anie.201500939

    45. [45]

      Kobayashi, K.; Kikuchi, T.; Kitagawa, S.; Tanaka, K. Angew. Chem. Int. Ed. 2014, 53, 11813. doi: 10.1002/anie.201406553  doi: 10.1002/anie.201406553

    46. [46]

      Itagaki, S.; Yamaguchi, K.; Mizuno, N. J. Mol. Catal. A: Chem. 2013, 366, 347. doi: 10.1016/j.molcata.2012.10.014  doi: 10.1016/j.molcata.2012.10.014

    47. [47]

      Farlow, M. W.; Adkins, H. J. Am. Chem. Soc. 1935, 57, 2222. doi: 10.1021/ja01314a054  doi: 10.1021/ja01314a054

    48. [48]

      González-Sebastián, L.; Flores-Alamo, M.; Garcı́a, J. J Organometallics 2013, 32, 7186. doi: 10.1021/om400876j  doi: 10.1021/om400876j

    49. [49]

      Minato, M.; Zhou, D. Y.; Sumiura, K. I.; Hirabayashi, R.; Yamaguchi, Y.; Ito, T. Chem. Commun. 2001, 2654. doi: 10.1039/B107837M  doi: 10.1039/B107837M

    50. [50]

      Liu, J.; Guo, C.; Zhang, Z.; Jiang, T.; Liu, H.; Song, J.; Fan, H.; Han, B. Chem. Commun. 2010, 46, 5770. doi: 10.1039/C0CC00751J  doi: 10.1039/C0CC00751J

    51. [51]

      Liu, H.; Mei, Q.; Xu, Q.; Song, J.; Liu, H.; Han, B. Green Chem. 2017, 19, 196. doi: 10.1039/C6GC02243J  doi: 10.1039/C6GC02243J

    52. [52]

      Zhang, S.; Mei, Q.; Liu, H.; Liu, H.; Zhang, Z.; Han, B. RSC Adv. 2016, 6, 32370. doi: 10.1039/C6RA05199E  doi: 10.1039/C6RA05199E

    53. [53]

      Motokura, K.; Kashiwame, D.; Miyaji, A.; Baba, T. Org. Lett. 2012, 14, 2642. doi: 10.1021/ol301034j  doi: 10.1021/ol301034j

    54. [54]

      Motokura, K.; Kashiwame, D.; Takahashi, N.; Miyaji, A.; Baba, T. Chem. Eur. J. 2013, 19, 10030. doi: 10.1002/chem.201300935  doi: 10.1002/chem.201300935

    55. [55]

      Motokura, K.; Takahashi, N.; Kashiwame, D.; Yamaguchi, S.; Miyaji, A.; Baba, T. Catal. Sci. Technol. 2013, 3, 2392. doi: 10.1039/C3CY00375B  doi: 10.1039/C3CY00375B

    56. [56]

      Motokura, K.; Takahashi, N.; Miyaji, A.; Sakamoto, Y.; Yamaguchi, S.; Baba, T. Tetrahedron 2014, 70, 6951. doi: 10.1016/j.tet.2014.07.089  doi: 10.1016/j.tet.2014.07.089

    57. [57]

      Shintani, R.; Nozaki, K.Organometallics 2013, 32, 2459. doi: 10.1021/om400175h  doi: 10.1021/om400175h

    58. [58]

      Federsel, C.; Boddien, A.; Jackstell, R.; Jennerjahn, R.; Dyson, P. J.; Scopelliti, R.; Laurenczy, G.; Beller, M. Angew. Chem. Int. Ed. 2010, 49, 9777. doi: 10.1002/anie.201004263  doi: 10.1002/anie.201004263

    59. [59]

      Ziebart, C.; Federsel, C.; Anbarasan, P.; Jackstell, R.; Baumann, W.; Spannenberg, A.; Beller, M. J. Am. Chem. Soc. 2012, 134, 20701. doi: 10.1021/ja307924a  doi: 10.1021/ja307924a

    60. [60]

      Frogneux, X.; Jacquet, O.; Cantat, T. Catal. Sci. Technol. 2014, 4, 1529. doi: 10.1039/C4CY00130C  doi: 10.1039/C4CY00130C

    61. [61]

      Federsel, C.; Ziebart, C.; Jackstell, R.; Baumann, W.; Beller, M. Chem. Eur. J. 2012, 18, 72. doi: 10.1002/chem.201101343  doi: 10.1002/chem.201101343

    62. [62]

      Daw, P.; Chakraborty, S.; Leitus, G.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. ACS Catal. 2017, 7, 2500. doi: 10.1021/acscatal.7b00116  doi: 10.1021/acscatal.7b00116

    63. [63]

      Yang, Z.-Z.; Yu, B.; Zhang, H.; Zhao, Y.; Ji, G.; Liu, Z. RSC Adv. 2015, 5, 19613. doi: 10.1039/C5RA00380F  doi: 10.1039/C5RA00380F

    64. [64]

      Luo, R.; Lin, X.; Chen, Y.; Zhang, W.; Zhou, X.; Ji, H. ChemSusChem 2017, 10, 1224. doi: 10.1002/cssc.201601490  doi: 10.1002/cssc.201601490

    65. [65]

      Luo, R.; Zhou, X.; Chen, S.; Li, Y.; Zhou, L.; Ji, H. Green Chem. 2014, 16, 1496. doi: 10.1039/C3GC42388C  doi: 10.1039/C3GC42388C

    66. [66]

      Nale, D. B.; Bhanage, B. M. Synlett 2016, 27, 1413. doi: 10.1055/s-0035-1561571  doi: 10.1055/s-0035-1561571

    67. [67]

      Fang, C.; Lu, C.; Liu, M.; Zhu, Y.; Fu, Y.; Lin, B.-L. ACS Catal. 2016, 6, 7876. doi: 10.1021/acscatal.6b01856  doi: 10.1021/acscatal.6b01856

    68. [68]

      Das Neves Gomes, C.; Jacquet, O.; Villiers, C.; Thuéry, P.; Ephritikhine, M.; Cantat, T. Angew. Chem. Int. Ed. 2012, 51, 187. doi: 10.1002/anie.201105516  doi: 10.1002/anie.201105516

    69. [69]

      Frogneux, X.; Blondiaux, E.; Thuéry, P.; Cantat, T. ACS Catal. 2015, 5, 3983. doi: 10.1021/acscatal.5b00734  doi: 10.1021/acscatal.5b00734

    70. [70]

      Villiers, C.; Dognon, J. P.; Pollet, R.; Thuéry, P.; Ephritikhine, M. Angew. Chem. Int. Ed. 2010, 49, 3465. doi: 10.1002/anie.201001035  doi: 10.1002/anie.201001035

    71. [71]

      Riduan, S. N.; Zhang, Y.; Ying, J. Y. Angewandte Chemie 2009, 121, 3372. doi: 10.1002/ange.200806058  doi: 10.1002/ange.200806058

    72. [72]

      Jacquet, O.; Das Neves Gomes, C.; Ephritikhine, M.; Cantat, T. J. Am. Chem. Soc. 2012, 134, 2934. doi: 10.1021/ja211527q  doi: 10.1021/ja211527q

    73. [73]

      Riduan, S. N.; Ying, J. Y.; Zhang, Y. J. Catal. 2016, 343, 46. doi: 10.1016/j.jcat.2015.09.009  doi: 10.1016/j.jcat.2015.09.009

    74. [74]

      Chong, C. C.; Kinjo, R. Angew. Chem. 2015, 127, 12284. doi: 10.1002/ange.201505244  doi: 10.1002/ange.201505244

    75. [75]

      Ortiz-Cervantes, C.; Flores-Alamo, M.; García, J. J. ACS Catal. 2015, 5, 1424. doi: 10.1021/cs5020095  doi: 10.1021/cs5020095

    76. [76]

      Song, J.; Zhou, B.; Liu, H.; Xie, C.; Meng, Q.; Zhang, Z.; Han, B. Green Chem. 2016, 18, 3956. doi: 10.1039/C6GC01455K  doi: 10.1039/C6GC01455K

    77. [77]

      Hao, L.; Zhao, Y.; Yu, B.; Yang, Z.; Zhang, H.; Han, B.; Gao, X.; Liu, Z. ACS Catal. 2015, 5, 4989. doi: 10.1021/acscatal.5b01274  doi: 10.1021/acscatal.5b01274

    78. [78]

      Dong, B.; Wang, L.; Zhao, S.; Ge, R.; Song, X.; Wang, Y.; Gao, Y. Chem. Commun. 2016, 52, 7082. doi: 10.1039/C6CC03058K  doi: 10.1039/C6CC03058K

    79. [79]

      Liu, X. F.; Li, X. Y.; Qiao, C.; Fu, H. C.; He, L. N. Angew. Chem. 2017, 129, 7533. doi: 10.1002/ange.201702734  doi: 10.1002/ange.201702734

    80. [80]

      Xie, C.; Song, J.; Wu, H.; Zhou, B.; Wu, C.; Han, B. ACS Sustainable Chem. Eng. 2017, 5, 7086. doi: 10.1021/acssuschemeng.7b01287  doi: 10.1021/acssuschemeng.7b01287

    81. [81]

      Liu, X. F.; Ma, R.; Qiao, C.; Cao, H.; He, L. N. Chem. Eur. J. 2016, 22, 16489. doi: 10.1002/chem.201603688  doi: 10.1002/chem.201603688

    82. [82]

      Lv, H.; Xing, Q.; Yue, C.; Lei, Z.; Li, F. Chem. Commun. 2016, 52, 6545. doi: 10.1039/C6CC01234E  doi: 10.1039/C6CC01234E

    83. [83]

      Zhao, T. -X.; Zhai, G. -W.; Liang, J.; Li, P.; Hu, X. -B.; Wu, Y. -T. Chem. Commun. 2017, 53, 8046. doi: 10.1039/C7CC03860G  doi: 10.1039/C7CC03860G

  • 加载中
    1. [1]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    2. [2]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    3. [3]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    4. [4]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    5. [5]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    6. [6]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    7. [7]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    8. [8]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    9. [9]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    10. [10]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    11. [11]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    12. [12]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    13. [13]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    14. [14]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    15. [15]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    16. [16]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    17. [17]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    18. [18]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    19. [19]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    20. [20]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

Metrics
  • PDF Downloads(11)
  • Abstract views(443)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return