Citation:
WANG Li-Juan, LI Qi, HAO Yan-Zhong, SHEN Shi-Gang, XU Dong-Sheng. Improvement of Quantum Dot Coverage of CdS/CdSe/TiO2 Hierarchical Hollow Sphere Photoanodes[J]. Acta Physico-Chimica Sinica,
;2016, 32(4): 983-989.
doi:
10.3866/PKU.WHXB201603144
-
TiO2 hierarchical hollow spheres (THHSs) are considered an ideal material for photoanodes of CdS/CdSe quantum dot-sensitized solar cells (QDSSCs) because of their high specific surface area, strong light scattering effect, and excellent charge transfer capability. However, in a typical CdS/CdSe quantum dot deposition process, chemical bath deposition, the coverage of the CdS/CdSe quantum dots is relatively low (~50%). According to the different surface properties of CdS/CdSe quantum dots and TiO2, we have developed a novel route to increase the quantum dot coverage while preventing their aggregation. In our method, 1-dodecanethiol was used as a surface protection molecule on the quantum dots. Then, in the secondary chemical bath deposition process, the newly emerged quantum dots grew only on the TiO2 surface and thus the coverage notably increased. Eventually, the quantum dot coverage reached 85.4%. This method effectively enhanced light utilization and led to an increase in the photocurrent of the QDSSCs. The reduced blank surface of TiO2 also efficiently suppressed electron-hole recombination. Thus, the photocurrent density was 15.69 mA·cm-2, the fill factor was 0.583, and the voltage was 0.605 V. As a result, a power conversion efficiency of 5.30% was obtained.
-
-
-
[1]
(1) Pan, Z.; Zhao, K.;Wang, J.; Zang, H.; Feng, Y.; Zhong, X. ACS Nano 2013, 7, 5215. doi: 10.1021/nn400947e
-
[2]
(2) Beard, M. C. J. Phys. Chem. Lett. 2011, 2 (11), 1282. doi: 10.1021/jz200166y
-
[3]
(3) Nozik, A. J. Inorg. Chem. 2005, 44 (20), 6893. doi: 10.1021/ic0508425
-
[4]
(4) Schaller, R. D.; Klimov, V. I. Phys. Rev. Lett. 2004, 92, 186601. doi: 10.1103/PhysRevLett.92.186601
-
[5]
(5) Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P. R.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L. Nano Lett. 2005, 5 (5), 865. doi: 10.1021/nl0502672
-
[6]
(6) Zaban, A. Mićić, O. I.; Gregg, B. A.; Nozik, A. J. Langmuir 1998, 14 (12), 3153. doi: 10.1021/la9713863
-
[7]
(7) Klimov, V. I. J. Phys. Chem. B 2006, 110 (34), 16827. doi: 10.1021/jp0615959
-
[8]
(8) Plass, R.; Pelet, S.; Krueger, J.; Grätzel, M. J. Phys. Chem. B 2002, 106 (31), 7578. doi: 10.1021/jp020453l
-
[9]
(9) Yang, J.W.;Wang, J.; Zhao, K.; Izuishi, T.; Li, Y.; Shen, Q.; Zhong, X. H. J. Phys. Chem. C 2015, 119, 28800. doi: 10.1021/acs.jpcc.5b10546
-
[10]
(10) Toyoda, T.; Sato, J.; Shen, Q. Rev. Sci. Instrum. 2003, 74, 297. doi: 10.1063/1.1515898
-
[11]
(11) Lee, H. J.; Kim, D. Y.; Yoo, J. S.; Bang, J.; Kim, S.; Park, S. M. Bull. Korean Chem. Soc. 2007, 28, 953. doi: 10.5012/bkcs.2007.28.6.953
-
[12]
(12) Liu, D.; Kamat, P. V. J. Phys. Chem. 1993, 97 (41), 10769. doi: 10.1021/j100143a041
-
[13]
(13) Feng, J. M.; Han, J. J.; Zhao, X. J. Prog. Org. Coat. 2009, 64, 268. doi: 10.1016/j.porgcoat.2008.08.022
-
[14]
(14) Lee, H. J.;Wang, M. K.; Chen, P.; Gamelin, D. R.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K. Nano Lett. 2009, 9 (12), 4221. doi: 10.1021/nl902438d
-
[15]
(15) Samadpour, M.; Iraji, Z. A.; Taghavinia, N.; Molaei, M. J. Phys. D: Appl. Phys. 2011, 44, 045103. doi: 10.1088/0022-3727/44/4/045103
-
[16]
(16) Lee, H. J.; Yum, J. H.; Leventis, H. C.; Zakeeruddin, S. M.; Haque, S. A.; Chen, P.; Seok, S. I.; Grätzel, M.; Nazeeruddin, M. K. J. Phys. Chem. C 2008, 112 (30), 11600. doi: 10.1021/jp802572b
-
[17]
(17) Lee, Y. L.; Chang, C. H. J. Power Sources 2008, 185, 584. doi: 10.1016/j.jpowsour.2008.07.014
-
[18]
(18) Plass, R.; Pelet, S.; Krueger, J.; Grätzel, M.; Bach, U. J. Phys. Chem. B 2002, 106, 7578. doi: 10.1021/jp020453l
-
[19]
(19) Qian, J.; Liu, Q. S.; Li, G.; Jiang, K. J.; Yang, L. M.; Song, Y. L. Chem. Commun. 2011, 47, 6461. doi: 10.1039/C1CC11595B
-
[20]
(20) Yu, Z. X.; Zhang, Q. X.; Qin, D.; Luo, Y. H.; Li, D. M.; Shen, Q.; Toyoda, T.; Meng, Q. B. Electrochem. Commun. 2010, 12, 1776. doi: 10.1016/j.elecom.2010.10.022
-
[21]
(21) Zhang, Q. X.; Zhang, Y. D.; Huang, S. Q.; Huang, X. M.; Luo, Y. H.; Meng, Q. B.; Li, D. M. Electrochem. Commun. 2010, 12, 327. doi: 10.1016/j.elecom.2009.12.032
-
[22]
(22) Rao, H. S.;Wu, W. Q.; Liu, Y.; Xu, Y. F.; Chen, B. X.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. Nano Energy 2014, 8, 1. doi: 10.1016/j.nanoen.2014.05.003
-
[23]
(23) Huang, H.; Pan, L.; Lim, C. K.; Gong, H.; Guo, J.; Tse, M. S.; Tan, O. K. Small 2013, 9, 3153. doi: 10.1002/smll.v9.18
-
[24]
(24) Tian, J. J, ; Lv, L. L.;Wang, X. Y.; Fei, C. B.; Liu, X. G.; Zhao, Z. X.;Wang, Y. J.; Cao, G. Z. J. Phys. Chem. C 2014, 118 (30), 16611. doi: 10.1021/jp412525k
-
[25]
(25) Zhang, Q. F.; Cao, G. Z. Nano Today 2011, 6, 91. doi: 10.1016/j.nantod.2010.12.007
-
[26]
(26) Wu, D. P.; Zhu, F.; Li, J. M.; Dong, H.; Li, Q.; Jiang, K.; Xu, D. S. J. Mater. Chem. 2012, 22, 11665. doi: 10.1039/C2JM30786C
-
[27]
(27) Zhao, J. H.; Yang, Y. N.; Cui, C.; Hu, H. H.; Zhang, Y. C.; Xu, J.; Lu, B. Q.; Xu, L. B.; Pan, J. Q.; Tang, W. H. J. Alloy. Compd. 2016, 663, 211. doi: 10.1016/j.jallcom.2015.12.118
-
[28]
(28) Cui, C.; Qiu, Y.W.; Zhao, J. H.; Lu, B. Q.; Hu, H. H.; Yang, Y. N.; Ma, N.; Xu, S.; Xu, L. B.; Li, X. Y. Electrochim. Acta 2015, 173, 551. doi: 10.1016/j.electacta.2015.05.100
-
[29]
(29) Zhao, L.; Li, J.; Shi, Y.;Wang, S. M.; Hu, J. H.; Dong, B. H.; Lu, H. B.;Wang, P. J. Alloy. Compd. 2013, 575, 168. doi: 10.1016/j.jallcom.2013.02.045
-
[30]
(30) Dong, H. Interface Structure Engineering of TiO2 Photoanode for Quantum Dot-Sensitized Solar Cells. Ph. D. Dissertation, Peking University, Beijing, 2015. [董会. 量子点敏化太阳能电池TiO2光阳极表界面结构调控研究[D]. 北京: 北京大学, 2015.]
-
[31]
(31) Sanchez-Ramirez, E. A.; Hernandez-Perez, M. A.; Aguilar-Hernandez, J. R.; Contreras-Puente, G. Materials Chemistry and Physics 2015, 165, 119. doi: 10.1016/j.matchemphys.2015.09.005
-
[32]
(32) Seo, H. K.; Ok, E. A.; Kim, W. M.; Park, J. K.; Seong, T. Y.; Lee, D.W.; Cho, H. Y.; Jeong, J. H. Thin Solid Films 2013, 546, 289. doi: 10.1016/j.tsf.2013.05.024
-
[33]
(33) Norris, D. J.; Bawendi, M. G. Phys. Rev. B 1996, 53, 16338. doi: 10.1103/PhysRevB.53.16338
-
[34]
(34) Mora-Seró, I.; Giménez, S.; Fabregat-Santiago, F, ; Gómez, R.; Shen, Q.; Toyoda, T.; Bisquert, J. Accounts Chem. Res. 2009, 42 (11), 1848. doi: 10.1021/ar900134d
-
[35]
(35) Guijarro, N.; Lana-Villarreal, T.; Mora-Sero, I.; Bisquert, J.; Gomez, R. J. Phys. Chem. C 2009, 113, 4208. doi: 10.1021/jp808091d
-
[1]
-
-
-
[1]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[2]
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
-
[3]
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007
-
[4]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
-
[5]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[6]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[7]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[8]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[9]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[10]
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
-
[11]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[12]
.
南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积
. CCS Chemistry, 2025, 7(0): -. -
[13]
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
-
[14]
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
-
[15]
Yu SU , Xinlian FAN , Yao YIN , Lin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126
-
[16]
Honglian Liang , Xiaozhe Kuang , Fuping Wang , Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073
-
[17]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[18]
Li'na ZHONG , Jingling CHEN , Qinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280
-
[19]
Cuicui Yang , Bo Shang , Xiaohua Chen , Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066
-
[20]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
-
[1]
Metrics
- PDF Downloads(6)
- Abstract views(389)
- HTML views(29)