Citation: ZUO Hui-Wen, LU Chun-Hai, REN Yu-Rong, LI Yi, ZHANG Yong-Fan, CHEN Wen-Kai. Pt4 Clusters Supported on Monolayer Graphitic Carbon Nitride Sheets for Oxygen Adsorption: A First-Principles Study[J]. Acta Physico-Chimica Sinica, ;2016, 32(5): 1183-1190. doi: 10.3866/PKU.WHXB201603032
-
The structural and electronic properties of Pt4 nanoparticles adsorbed on monolayer graphitic carbon nitride (Pt4/g-C3N4), as well as the adsorption behavior of oxygen molecules on the Pt4/g-C3N4 surface have been investigated through first-principles density-functional theory (DFT) calculations with the generalized gradient approximation (GGA). The interaction of the oxygen molecules with the bare g-C3N4 and the Pt4 clusters was also calculated for comparison. Our calculations show that Pt nanoparticles prefer to bond with four edge N atoms on heptazine phase g-C3N4 (HGCN) surfaces, forming two hexagonal rings. For s-triazine phase g-C3N4 (TGCN) surfaces, Pt nanoparticles prefer to sit atop the single vacancy site, forming three bonds with the nearest nitrogen atoms. Stronger hybridization of the Pt nanoparticles with the sp2 dangling bonds of neighboring nitrogen atoms leads to the Pt4 clusters strongly binding on both types of g-C3N4 surface. In addition, the results from Mulliken charge population analyses suggest that there are electrons flowing from the Pt clusters to g-C3N4. According to the comparative analyses of the O2 adsorbed on the Pt4/HGCN, Pt4/TGCN, and pure g-C3N4 systems, the presence of metal clusters promotes greater electron transfer to oxygen molecules and elongates the O―O bond. Meanwhile, its greater adsorbate-substrate distortion and large adsorption energy render the Pt4/HGCN system slightly superior to the Pt4/TGCN system in catalytic performance. The results validate that being supported on g-C3N4 may be a good way to modify the electronic structure of materials and their surface properties improve their catalytic performance.
-
-
[1]
(1) Seger, B.; Kamat, P. V. J. Phys. Chem. C 2009, 113 (19), 7990. doi: 10.1021/jp900360k
-
[2]
(2) Wu, S. Y.; Ho, J. J. J. Phys. Chem. C 2014, 118 (46), 26764. doi: 10.1021/jp507453h
-
[3]
(3) Song, E. H.; Wen, Z.; Jiang, Q. J. Phys. Chem. C 2011, 115 (9), 3678. doi: 10.1021/jp108978c
-
[4]
(4) Lu, Y. H.; Zhou, M.; Zhang, C.; Feng, Y. P. J. Phys. Chem. C 2009, 113 (47), 20156. doi: 10.1021/jp908829m
-
[5]
(5) Zhou, M.; Zhang, A. H.; Dai, Z. X.; Zhang, C.; Feng, Y. P. J. Chem. Phys. 2010, 132 (19), 194704. doi: 10.1063/1.3427246
-
[6]
(6) Li, Y. F.; Zhou, Z.; Yu, G. T.; Chen, W.; Chen, Z. F. J. Phys. Chem. C 2010, 114 (14), 6250. doi: 10.1021/jp911535v
-
[7]
(7) Lim, D. H.; Negreira, A. S.; Wilcox, J. J. Phys. Chem. C 2011, 115 (18), 8961. doi: 10.1021/jp2012914
-
[8]
(8) Xu, J.; Wang, Y. J.; Zhu, Y. F. Langmuir 2013, 29 (33), 10566. doi: 10.1021/la402268u
-
[9]
(9) Wang, X. C.; Maeda, K.; Chen, X. F.; Takanabe, K.; Domen, K.; Hou, Y. D.; Fu, X. Z.; Antonietti, M. J. Am. Chem. Soc. 2009, 131 (5), 1680. doi: 10.1021/ja809307s
-
[10]
(10) Zhu, J. J.; Xiao, P.; Li, H. L.; Carabineiro, S. A. C. ACS Appl. Mater. Interfaces 2014, 6 (19), 16449. doi: 10.1021/am502925j
-
[11]
(11) Wang, X. C.; Blechert, S.; Antonietti, M. ACS Catal. 2012, 2 (8), 1596. doi: 10.1021/cs300240x
-
[12]
(12) Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Muller, J. O.; Schlogl, R.; Carlsson, J. M. J. Mater. Chem. 2008, 18 (41), 4893. doi: 10.1039/B800274F
-
[13]
(13) Zhang, Z. H.; Leinenweber, K.; Bauer, M.; Garvie, L. A. J.; McMillan, P. F.; Wolf, G. H. J. Am. Chem. Soc. 2001, 123 (32), 7788. doi: 10.1021/ja0103849
-
[14]
(14) Li, X. H.; Zhang, J. S.; Chen, X. F.; Fischer, A.; Thomas, A.; Antonietti, M.; Wang, X. C. Chem. Mater. 2011, 23 (19), 4344. doi: 10.1021/cm201688v
-
[15]
(15) Jürgens, B.; Irran, E.; Senker, J.; Kroll, P.; Müller, H.; Schnick, W. J. Am. Chem. Soc. 2003, 125 (34), 10288. doi: 10.1021/ja0357689
-
[16]
(16) Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nature Materials 2009, 8 (1), 76. doi: 10.1038/NMAT2317
-
[17]
(17) Wirth, J.; Neumann, R.; Antonietti, M.; Saalfrank, P. Phys. Chem. Chem. Phys. 2014, 16 (30), 15917. doi: 10.1039/c4cp02021a
-
[18]
(18) Goettmann, F.; Thomas, A.; Antonietti, M. Angew. Chem. Int. Edit. 2007, 46 (15), 2717. doi: 10.1002/anie.200603478
-
[19]
(19) Lin, J. L.; Pan, Z. M.; Wang, X. C. ACS Sustainable Chemistry & Engineering 2014, 2 (3), 353. doi: 10.1021/sc4004295
-
[20]
(20) Aijaz, A.; Fujiwara, N.; Xu, Q. J. Am. Chem. Soc. 2014, 136 (19), 6790. doi: 10.1021/ja5003907
-
[21]
(21) Huang, Z. J.; Li, F. B.; Chen, B. F.; Lu, T.; Yuan, Y.; Yuan, G. Q. Applied Catalysis B: Environmental 2013, 136-137, 269. doi: 10.1016/j.apcatb.2013.01.057
-
[22]
(22) Dong, F.; Wang, Z. Y.; Sun, Y. J.; Ho, W. K.; Zhang, H. D. J. Colloid Interface Sci. 2013, 401, 70. doi: 10.1016/j.jcis.2013.03.034
-
[23]
(23) Tahir, M.; Cao, C. B.; Mahmood, N.; Butt, F. K.; Mahmood, A.; Idrees, F.; Hussain, S.; Tanveer, M.; Ali, Z.; Aslam, I. ACS Appl. Mater. Interfaces 2014, 6 (2), 1258. doi: 10.1021/am405076b
-
[24]
(24) Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sakamoto, H.; Ichikawa, S.; Hirai, T. ACS Catal. 2014, 4 (3), 774. doi: 10.1021/cs401208c
-
[25]
(25) Cao, S.W.; Yu, J. G. J. Phys. Chem. Lett. 2014, 5 (12), 2101. doi: 10.1021/jz500546b
-
[26]
(26) Chen, X. F.; Jun, Y. S.; Takanabe, K.; Maeda, K.; Domen, K.; Fu, X. Z.; Antonietti, M.; Wang, X. C. Chem. Mater. 2009, 21 (18), 4093. doi: 10.1021/cm902130z
-
[27]
(27) Unni, S. M.; Illathvalappil, R.; Gangadharan, P. K.; Bhange, S. N.; Kurungot, S. Chem. Commun. 2014, 50 (89), 13769. doi: 10.1039/c4cc06180b
-
[28]
(28) Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S. Z. Energy & Environmental Science 2012, 5 (5), 6717. doi: 10.1039/c2ee03479d
-
[29]
(29) Zheng, Y.; Jiao, Y.; Chen, J.; Liu, J.; Liang, J.; Du, A. J.; Zhang, W. M.; Zhu, Z. H.; Smith, S. C.; Jaroniec, M.; Lu, G. Q.; Qiao, S. Z. J. Am. Chem. Soc. 2011, 133 (50), 20116. doi: 10.1021/ja209206c
-
[30]
(30) Kattel, S.; Atanassov, P.; Kiefer, B. Phys. Chem. Chem. Phys. 2013, 15 (1), 148. doi: 10.1039/c2cp42609a
-
[31]
(31) Mansor, N.; Jorge, A. B.; Corà, F.; Gibbs, C.; Jervis, R.; McMillan, P. F.; Wang, X.; Brett, D. J. J. Phys. Chem. C 2014, 118 (13), 6831. doi: 10.1021/jp412501j
-
[32]
(32) Zhu, J. J.; Wei, Y. C.; Chen, W. K.; Zhao, Z.; Thomas, A. Chem. Commun. 2010, 46 (37), 6965. doi: 10.1039/c0cc01432j
-
[33]
(33) Ma, X. G.; Lv, Y. H.; Xu, J.; Liu, Y. F.; Zhang, R. Q.; Zhu, Y. F. J. Phys. Chem. C 2012, 116 (44), 23485. doi: 10.1021/jp308334x
-
[34]
(34) Delley, B. Phys. Rev. B 2002, 66 (15), 155125. doi: 10.1103/PhysRevB.66.155125
-
[35]
(35) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77 (18), 3865. doi: 10.1103/PhysRevLett.77.3865
-
[36]
(36) Stampfl, C.; Van deWalle, C. G. Phys. Rev. B 1999, 59 (8), 5521. doi: 10.1103/PhysRevB.59.5521
-
[37]
(37) Heyd, J.; Scuseria, G. E. J. Chem. Phys. 2004, 121 (3), 1187. doi: 10.1063/1.1760074
-
[38]
(38) Heyd, J.; Peralta, J. E.; Scuseria, G. E.; Martin, R. L. J. Chem. Phys. 2005, 123 (17), 174101. doi: 10.1063/1.2085170
-
[39]
(39) Pan, H.; Zhang, Y.W.; Shenoy, V. B.; Gao, H. J. ACS Catal. 2011, 1 (2), 99. doi: 10.1021/cs100045u
-
[40]
(40) Bojdys, M. J.; Müller, J. O.; Antonietti, M.; Thomas, A. Chem. Eur. J. 2008, 14 (27), 8177. doi: 10.1002/chem.200800190
-
[41]
(41) Teter, D. M.; Hemley, R. J. Science 1996, 271 (5245), 53. doi: 10.1126/science.271.5245.53
-
[42]
(42) Xu, Y.; Gao, S. P. Int. J. Hydrogen Energy 2012, 37 (15), 11072. doi: 10.1016/j.ijhydene.2012.04.138
-
[43]
(43) Wu, F.; Liu, Y. F.; Yu, G. X.; Shen, D. F.; Wang, Y. L.; Kan, E. J. J. Phys. Chem. Lett. 2012, 3 (22), 3330. doi: 10.1021/jz301536k
-
[44]
(44) Wu, H. Z.; Liu, L. M.; Zhao, S. J. Phys. Chem. Chem. Phys. 2014, 16 (7), 3299. doi: 10.1039/c3cp54333a
-
[45]
(45) Mattesini, M.; Matar, S. F.; Etourneau, J. J. Mater. Chem. 2000, 10 (3), 709. doi: 10.1039/a908903i
-
[46]
(46) Khabashesku, V. N.; Zimmerman, J. L.; Margrave, J. L. Chem. Mater. 2000, 12 (11), 3264. doi: 10.1021/cm000328r
-
[47]
(47) Lim, D. H.; Wilcox, J. J. Phys. Chem. C 2011, 115 (46), 22742. doi: 10.1021/jp205244m
-
[1]
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[3]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[4]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[5]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[6]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[7]
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
-
[8]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[9]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[10]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[11]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[12]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[13]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[14]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[15]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[16]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[17]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[18]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[19]
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
-
[20]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(852)
- HTML views(37)