Citation: ZHOU Li, ZHU Jun, XU Ya-Feng, SHAO Zhi-Peng, ZHANG Xu-Hui, YE Jia-Jiu, HUANG Yang, ZHANG Chang-Neng, DAI Song-Yuan. Influence of Insulating Oxide Coatings on the Performance of Perovskite Solar Cells and the Interface Charge Recombination Dynamics[J]. Acta Physico-Chimica Sinica, ;2016, 32(5): 1207-1213. doi: 10.3866/PKU.WHXB201602241 shu

Influence of Insulating Oxide Coatings on the Performance of Perovskite Solar Cells and the Interface Charge Recombination Dynamics

  • Corresponding author: ZHU Jun,  DAI Song-Yuan, 
  • Received Date: 11 December 2015
    Available Online: 22 February 2016

    Fund Project: 国家高技术研究发展计划(863)(2015AA050602) (863)(2015AA050602)国家自然科学基金(21403247)资助项目 (21403247)

  • Insulating oxides of SiO2, ZrO2, and Al2O3 were coated using a dipping method on the surface of mesoporous TiO2 nanoparticles for perovskite solar cells. The effects of the insulating oxide coatings on the performance of the perovskite solar cells and the interface charge recombination dynamics were investigated in detail. The efficiency of devices after SiO2 coating improved by 13.7% due to their FF (fill factor) increasing from 67.6% to 72.3%. However, the devices with ZrO2 and Al2O3 coatings exhibited an increase in Voc of up to 50 mV and a decrease in Jsc and FF. Transient absorption spectroscopy on a timescale from nanoseconds to milliseconds was performed to study the interface recombination lifetime between electrons and holes and the changes of the device performances are discussed.
  • 加载中
    1. [1]

      (1) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050. doi: 10.1021/ja809598r

    2. [2]

      (2) Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science 2015, 348 (6240), 1234. doi: 10.1126/science.aaa9272

    3. [3]

      (3) Prashant, V. K. J. Am. Chem. Soc. 2014, 136, 3713. doi: 10.1021/ja501108n

    4. [4]

      (4) Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341. doi: 10.1126/science.1243982

    5. [5]

      (5) Xing, G.; Mathews, N.; Sun, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Science 2013, 342, 344. doi: 10.1126/science.1243167

    6. [6]

      (6) Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. Adv. Mater. 2014, 26, 1584. doi: 10.1002/adma.201305172

    7. [7]

      (7) Marchioro, A.; Teuscher, J.; Friedrich, D.; Kunst, M.; van de Krol, R.; Moehl, T.; Grätzel, M.; Moser, J. E. Nat. Photon. 2014, 8(3), 250.

    8. [8]

      (8) Ponseca, C. S.; Savenije, T. J.; Abdellah, M.; Zheng, K.; Yartsev, A.; Pascher, T.; Harlang, T.; Chabera, P.; Pullerits, T.; Stepanov, A.; Wolf, J. P.; Sundström, V. J. Am. Chem. Soc. 2014, 136, 5189. doi: 10.1038photon.2013.374

    9. [9]

      (9) Shen, Q.; Ogomi, Y.; Chang, J.; Tsukamoto, S.; Kukihara, K.; Oshima, T.; Osada, N.; Yoshino, K.; Katayama, K.; Toyoda, T.; Hayase, S. Phys. Chem. Chem. Phys. 2014, 16 (37), 19984. doi: 10.1039/C4CP03073G

    10. [10]

      (10) Dualeh, A.; Moehl, T.; Tétreault, N.; Teuscher, J.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. ACS Nano 2014, 8, 362.

    11. [11]

      (11) Leijtens, T.; Lauber, B.; Eperon, G. E.; Stranks, S. D.; Snaith, H. J. J. Phys. Chem. Lett. 2014, 5, 1096. doi: 10.1021/jz500209g

    12. [12]

      (12) Marin-Beloqui, J. M.; Hernandez, J. P.; Palomares, E. Chem. Commun. 2014, 50, 14566. doi: 10.1039/C4CC06338D

    13. [13]

      (13) Kay, A.; Grätzel, M. Chem. Mater. 2002, 14, 2930. doi: 10.1021/cm0115968

    14. [14]

      (14) Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. Chem. Commun. 2002, (14), 1464.

    15. [15]

      (15) Ogomi, Y.; Kukihara, K.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S.; Momose, H.; Hayase, S. ChemPhysChem 2014, 15, 1062. doi: 10.1002/cphc.201301153

    16. [16]

      (16) Baikie, T.; Fang, Y.; Kadro, J. M.; Wei, F.; Mhaisalkar, S. G.; Grätzel, M.; White, T. J. J. Mater. Chem. A 2013, 1, 5628.

    17. [17]

      (17) Jeon, N. J.; Lee, J.; Noh, J. H.; Nazeeruddin, M. K.; Grätzel, M.; Seok, S. I. J. Am. Chem. Soc. 2013, 135, 19087. doi: 10.1021/ja410659k

    18. [18]

      (18) Shao, Z. P.; Pan, X.; Zhang, X. H.; Ye, J. J.; Zhu, L. Z.; Li, Y.; Ma, Y. M.; Huang, Y.; Zhu, J.; Hu, L.; Kong, F. T.; Dai, S. Y. Acta Chim. Sin. 2015, 73, 267. [邵志鹏, 潘旭, 张旭辉, 叶加久, 朱梁正, 李毅, 马艳梅, 黄阳, 朱俊, 胡林华, 孔凡太, 戴松元. 化学学报, 2015, 73, 367.] doi: 10.6023/A14100721

    19. [19]

      (19) Dai, S. Y.; Li, Z. Q.; Tao, L.; Hu, L. H. Journal of Anhui Normal University (Natural Science) 2015, (4), 001. [戴松元, 李兆乾, 桃李, 胡林华. 安徽师范大学学报(自然科学版), 2015, (4), 001.]

    20. [20]

      (20) Liang, J.; Zhang, G.; Sun.W. RSC Adv. 2014, 4, 6746. doi: 10.1039/c3ra46188b

    21. [21]

      (21) Li, W. X.; Hu, L. H.; Dai, S. Y. Acta Phys. -Chim. Sin. 2011, 27 (10), 2367. [李文欣, 胡林华, 戴松元. 物理化学学报, 2011, 27 (10), 2367.] doi: 10.3866/PKU.WHXB20111011

    22. [22]

      (22) Stranks, S. D.; Burlakov, V. M.; Leijtens, T.; Ball, J. M.; Goriely, A.; Snaith, H. J. Phys. Rev. Appl. 2014, 2, 034007.

    23. [23]

      (23) Abate, A.; Saliba, M.; Hollman, D. J.; Stranks, S. D.; Wojciechowski, K.; Avolio, R.; Grancini, G.; Petrozza, A.; Snaith, H. J. Nano Lett. 2014, 14 (6), 3247. doi: 10.1021l500627x

    24. [24]

      (24) Olson, C.; Veldman, D.; Bakker, K.; Lenzmann, F. Int. J. Photoenergy 2011, 513089.

    25. [25]

      (25) Matas Adams, A.; Marin-Beloqui, J. M.; Stoica, G.; Palomares, E. J. Mater. Chem. A 2015, 3, 22154. doi: 10.1039/C5TA06041A

    26. [26]

      (26) Marin-Beloqui, J. M.; Hernandez, J. P.; Palomares, E. Chem. Commun. 2014, 50, 14566. doi: 10.1039/C4CC06338D

    27. [27]

      (27) Ogomi, Y.; Kukihara, K.; Qing, S.; Toyoda, T.; Yoshino, K.; Pandey, S.; Momose, H.; Hayase, S. ChemPhysChem 2014, 15 (6), 1062. doi: 10.1002/cphc.201301153

    28. [28]

      (28) Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. J. Am. Chem. Soc. 2003, 125 (2), 475. doi: 10.1021/ja027945w

    29. [29]

      (29) Zhao, K.; Pan, Z.; Mora-Seró, I.; Cánovas, E.; Wang, H.; Song, Y.; Gong, X.; Wang, J.; Bonn, M.; Bisquert, J.; Zhong, X. J. Am. Chem. Soc. 2015, 137, 5602. doi: 10.1021/jacs.5b01946

  • 加载中
    1. [1]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    2. [2]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    5. [5]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    6. [6]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    7. [7]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    8. [8]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    9. [9]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    13. [13]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    14. [14]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    15. [15]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    16. [16]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    17. [17]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    18. [18]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    19. [19]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    20. [20]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

Metrics
  • PDF Downloads(0)
  • Abstract views(786)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return