Citation:
	            
		            ZHAO  Jun-Feng, SUN  Xiao-Li, HUANG  Xu-Ri, LI  Ji-Lai. A Theoretical Study on the Reactivity and Charge Effect of PtRu Clusters toward Methanol Activation[J]. Acta Physico-Chimica Sinica,
							;2016, 32(5): 1175-1182.
						
							doi:
								10.3866/PKU.WHXB201602221
						
					
				
					
				
	        
- 
	                	Density functional theory (DFT) calculations were performed to gain mechanistic insight into the methanol C―H and O―H bond activations mediated by ruthenium-doped platinum cationic clusters [PtnRum]+ (m + n = 3, n ≥ 1). The charge effect on the reactivity has been elucidated. Calculations show that positive charge is evenly distributed on the three Pt atoms of the [Pt3]+ cluster, while in the Ru-doped clusters, positive charge is mainly distributed on the Ru atom(s). The reactivity of [PtnRum]+ is significantly greater than neutral [PtnRum] during the initial C―H bond cleavage, while only [Pt3]+ exhibits greater reactivity than [Pt3] in the course of O―H bond cleavage. This study may aid in deeper understanding of C―H/O―H bond activations mediated by metal clusters.
- 
								Keywords:
								
 - Density functional theory,
 - Methanol,
 - Bond activation,
 - Charge,
 - Reactivity
 
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
(1) Tartaglino, U.; Zykova-Timan, T.; Ercolessi, F.; Tosatti, E. Phys. Rep. 2005, 411, 291. doi: 10.1016/j.physrep.2005.01.004
 - 
			
                    [2]
                
			
(2) Knickelbein, M. B. Ann. Rev. Phys. Chem. 1999, 50, 79. doi: 10.1146/annurev.physchem.50.1.79
 - 
			
                    [3]
                
			
(3) Wen, Z.; Liu, J.; Li, J. Adv. Mater. 2008, 20, 743. doi: 10.1002/adma.200701578
 - 
			
                    [4]
                
			
(4) Achatz, U.; Berg, C.; Joos, S.; Fox, B. S.; Beyer, M. K.; Niedner-Schatteburg, G.; Bondybey, V. E. Chem. Phys. Lett. 2000, 320, 53. doi: 10.1016/S0009-2614(00)00179-2
 - 
			
                    [5]
                
			
(5) Kwon, Y. H.; Kim, S. C.; Lee, S. Y. Macromolecules 2009, 42, 5244. doi: 10.1021/ma900781c
 - 
			
                    [6]
                
			
(6) Li, Y.; Tang, L.; Li, J. Electrochem. Commun. 2009, 11, 846. doi: 10.1016/j.elecom.2009.02.009
 - 
			
                    [7]
                
			
(7) Jeon, M. K.; Daimon, H.; Lee, K. R.; Nakahara, A.; Woo, S. I. Electrochem. Commun. 2007, 9, 2692. doi: 10.1016/j.elecom.2007.09.001
 - 
			
                    [8]
                
			
(8) Liu, Y. C.; Qiu, X. P.; Huang, Y. Q.; Zhu, W. T. J. Power Sources 2002, 111, 160. doi: 10.1016/S0378-7753(02)00298-7
 - 
			
                    [9]
                
			
(9) Martínez-Huerta, M. V.; Rodríguez, J. L.; Tsiouvaras, N.; Peña, M. A.; Fierro, J. L. G.; Pastor, E. Chem. Mater. 2008, 20, 4249. doi: 10.1021/cm703047p
 - 
			
                    [10]
                
			
(10) Tian, W. Q.; Ge, M.; Sahu, B. R.; Wang, D.; Yamada, T.; Mashiko, S. J. Phys. Chem. A 2004, 108, 3806. doi: 10.1021/jp0498365
 - 
			
                    [11]
                
			
(11) Xiao, L.; Wang, L. J. Phys. Chem. A 2004, 108, 8605. doi: 10.1021/jp0485035
 - 
			
                    [12]
                
			
(12) Majumdar, D.; Dai, D.; Balasubramanian, K. J. Chem. Phys. 2000, 113, 7919. doi: 10.1063/1.1316039
 - 
			
                    [13]
                
			
(13) Majumdar, D.; Dai, D.; Balasubramanian, K. J. Chem. Phys. 2000, 113, 7928. doi: 10.1063/1.1316009
 - 
			
                    [14]
                
			
(14) Grönbeck, H.; Andreoni, W. Chem. Phys. 2000, 262, 1. doi: 10.1016/S0301-0104(00)00294-9
 - 
			
                    [15]
                
			
(15) de Visser, S. P.; Shaik, S. J. Am. Chem. Soc. 2003, 125, 7413. doi: 10.1021/ja034142f
 - 
			
                    [16]
                
			
(16) Geng, C.; Ye, S.; Neese, F. Angew. Chem. Int. Edit. 2010, 49, 5717. doi: 10.1002/anie.v49:33
 - 
			
                    [17]
                
			
(17) Li, J.; Wu, X. N.; Schlangen, M.; Zhou, S.; González-Navarrete, P.; Tang, S.; Schwarz, H. Angew. Chem. Int. Edit. 2015, 54, 5074. doi: 10.1002/anie.v54.17
 - 
			
                    [18]
                
			
(18) Li, J. L.; Geng, C. Y.; Huang, X. R.; Zhang, X.; Sun, C. C. Organometallics 2007, 26, 2203. doi: 10.1021/om070039d
 - 
			
                    [19]
                
			
(19) Li, J. L.; Zhang, X.; Huang, X. R. Phys. Chem. Chem. Phys. 2012, 14, 246. doi: 10.1039/C1CP22187F
 - 
			
                    [20]
                
			
(20) Schwarz, H. Angew. Chem. Int. Edit. 2011, 50, 10096. doi: 10.1002/anie.201006424
 - 
			
                    [21]
                
			
(21) Shaik, S.; Cohen, S.; Wang, Y.; Chen, H.; Kumar, D.; Thiel, W. Chem. Rev. 2009, 110, 949. doi: 10.1021/cr900121s
 - 
			
                    [22]
                
			
(22) Shaik, S.; de Visser, S. P.; Ogliaro, F.; Schwarz, H.; Schröder, D. Curr. Opin. Chem. Biol. 2002, 6, 556. doi: 10.1016/S1367-5931(02)00363-0
 - 
			
                    [23]
                
			
(23) Shaik, S.; Kumar, D.; de Visser, S. P.; Altun, A.; Thiel, W. Chem. Rev. 2005, 105, 2279. doi: 10.1021/cr030722j
 - 
			
                    [24]
                
			
(24) Sun, X.; Li, J.; Huang, X.; Sun, C. Curr. Inorg. Chem. 2012, 2, 64. doi: 10.2174/1877944111202010064
 - 
			
                    [25]
                
			
(25) Ye, S.; Neese, F. Curr. Opin. Chem. Biol. 2009, 13, 89. doi: 10.1016/j.cbpa.2009.02.007
 - 
			
                    [26]
                
			
(26) Ye, S.; Neese, F. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 1228. doi: 10.1073/pnas.1008411108
 - 
			
                    [27]
                
			
(27) Zhao, J. F.; Sun, X. L.; Li, J. L.; Huang, X. R. Acta Phys. -Chim. Sin. 2015, 31, 1077. [赵俊凤, 孙小丽, 李吉来, 黄旭日. 物理化学学报, 2015, 31, 1077.] doi: 10.3866/PKU.WHXB201504014
 - 
			
                    [28]
                
			
(28) Zhong, W.; Liu, Y.; Zhang, D. J. Mol. Model. 2012, 18, 3051. doi: 10.1007/s00894-011-1318-7
 - 
			
                    [29]
                
			
(29) Koszinowski, K.; Schlangen, M.; Schröder, D.; Schwarz, H. Int. J. Mass Spectrom. 2004, 237, 19. doi: 10.1016/j.ijms.2004.06.009
 - 
			
                    [30]
                
			
(30) Koszinowski, K.; Schröder, D.; Schwarz, H. Chem. Phys. Chem. 2003, 4, 1233. doi: 10.1002/cphc.200300840
 - 
			
                    [31]
                
			
(31) Koszinowski, K.; Schröder, D.; Schwarz, H. J. Am. Chem. Soc. 2003, 125, 3676. doi: 10.1021/ja029791q
 - 
			
                    [32]
                
			
(32) Koszinowski, K.; Schröder, D.; Schwarz, H. Organometallics 2003, 22, 3809. doi: 10.1021/om030272l
 - 
			
                    [33]
                
			
(33) Koszinowski, K.; Schröder, D.; Schwarz, H. J. Phys. Chem. A 2003, 107, 4999. doi: 10.1021/jp027713j
 - 
			
                    [34]
                
			
(34) Koszinowski, K.; Schröder, D.; Schwarz, H. Angew. Chem. Int. Edit. 2004, 43, 121. doi: 10.1002/anie.200352817
 - 
			
                    [35]
                
			
(35) Koszinowski, K.; Schröder, D.; Schwarz, H. Organometallics 2004, 23, 1132. doi: 10.1021/om0306675
 - 
			
                    [36]
                
			
(36) Kamarudin, S. K.; Achmad, F.; Daud, W. R.W. Int. J. Hydrog. Energy 2009, 34, 6902. doi: 10.1016/j.ijhydene.2009.06.013
 - 
			
                    [37]
                
			
(37) Kamarudin, S. K.; Daud, W. R.W.; Ho, S. L.; Hasran, U. A. J. Power Sources 2007, 163, 743. doi: 10.1016/j.jpowsour.2006.09.081
 - 
			
                    [38]
                
			
(38) Rabis, A.; Rodriguez, P.; Schmidt, T. J. ACS Catal. 2012, 2, 864. doi: 10.1021/cs3000864
 - 
			
                    [39]
                
			
(39) Jin, X.; He, B.; Miao, J.; yuan, J.; Zhang, Q.; Niu, L. Carbon 2012, 50, 3083. doi: 10.1016/j.carbon.2012.03.004
 - 
			
                    [40]
                
			
(40) La-Torre-Riveros, L.; Guzman-Blas, R.; Méndez-Torres, A. E.; Prelas, M.; Tryk, D. A.; Cabrera, C. R. ACS Appl. Mater. Interfaces 2012, 4, 1134. doi: 10.1021/am2018628
 - 
			
                    [41]
                
			
(41) Nishanth, K. G.; Sridhar, P.; Pitchumani, S.; Shukla, A. K. Fuel Cells 2012, 12, 146. doi: 10.1002/fuce.201100113
 - 
			
                    [42]
                
			
(42) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.
 - 
			
                    [43]
                
			
(43) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913
 - 
			
                    [44]
                
			
(44) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. doi: 10.1063/1.448799
 - 
			
                    [45]
                
			
(45) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. doi: 10.1063/1.448975
 - 
			
                    [46]
                
			
(46) Li, J.; Ryde, U. Inorg. Chem. 2014, 53, 11913. doi: 10.1021/ic5010837
 - 
			
                    [47]
                
			
(47) Li, J. L.; Mata, R. A.; Ryde, U. J. Chem. Theory Comput. 2013, 9, 1799. doi: 10.1021/ct301094r
 - 
			
                    [48]
                
			
(48) Zhang, X.; Schwarz, H. Chem. Eur. J. 2010, 16, 5882. doi: 10.1002/chem.201000567
 - 
			
                    [49]
                
			
(49) Zhang, X.; Schwarz, H. Theor. Chem. Acc. 2011, 129, 389. doi: 10.1007/s00214-010-0861-0
 - 
			
                    [50]
                
			
(50) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297. doi: 10.1039/b508541a
 - 
			
                    [51]
                
			
(51) Fukui, K. J. Phys. Chem. 1970, 74, 4161. doi: 10.1021/j100717a029
 - 
			
                    [52]
                
			
(52) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378. doi: 10.1021/jp810292n
 - 
			
                    [53]
                
			
(53) Neese, F. J. Am. Chem. Soc. 2006, 128, 10213. doi: 10.1021/ja061798a
 - 
			
                    [54]
                
			
(54) Neese, F. WIREs Comput. Mol. Sci. 2012, 2, 73. doi: 10.1002/wcms.81
 - 
			
                    [55]
                
			
(55) Sun, X.; Geng, C.; Huo, R.; Ryde, U.; Bu, Y.; Li, J. J. Phys. Chem. B 2014, 118, 1493. doi: 10.1021/jp410727r
 - 
			
                    [56]
                
			
(56) Sun, X. H.; Sun, X. L.; Geng, C. Y.; Zhao, H. T.; Li, J. L. J. Phys. Chem. A 2014, 118, 7146. doi: 10.1021/jp505662x
 - 
			
                    [57]
                
			
(57) Sun, X. L.; Huang, X. R.; Li, J. L.; Huo, R. P.; Sun, C. C. J. Phys. Chem. A 2012, 116, 1475. doi: 10.1021/jp2120302
 - 
			
                    [58]
                
			
(58) Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J. Comput. Chem. 2004, 25, 1605. doi: 10.1002/jcc.20084
 - 
			
                    [59]
                
			
(59) Li, J.; González-Navarrete, P.; Schlangen, M.; Schwarz, H. Chem. Eur. J. 2015, 21, 7780. doi: 10.1002/chem.v21.21
 - 
			
                    [60]
                
			
(60) Greeley, J.; Mavrikakis, M. J. Am. Chem. Soc. 2002, 124, 7193. doi: 10.1021/ja017818k
 - 
			
                    [61]
                
			
(61) Greeley, J.; Mavrikakis, M. J. Am. Chem. Soc. 2004, 126, 3910. doi: 10.1021/ja037700z
 - 
			
                    [62]
                
			
(62) Kozuch, S.; Shaik, S. Accounts Chem. Res. 2010, 44, 101. doi: 10.1021/ar1000956
 - 
			
                    [63]
                
			
(63) Li, J.; Wu, X. N.; Zhou, S.; Tang, S.; Schlangen, M.; Schwarz, H. Angew. Chem. Int. Edit. 2015, 54, 12298. doi: 10.1002/anie.201503763
 - 
			
                    [64]
                
			
(64) Li, J.; Zhou, S.; Wu, X. N.; Tang, S.; Schlangen, M.; Schwarz, H. Angew. Chem. Int. Edit. 2015, 54, 11861. doi: 10.1002/anie.201505336
 - 
			
                    [65]
                
			
(65) Zhong, W. H.; Zhang, D. J. Prog. React. Kinet. Mech. 2013, 38, 86. doi: 10.3184/146867813X13590434110230
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
 - 
				[2]
				
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
 - 
				[3]
				
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
 - 
				[4]
				
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
 - 
				[5]
				
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
 - 
				[6]
				
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
 - 
				[7]
				
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
 - 
				[8]
				
Tong WU , Yi ZHONG , Weimin ZHAO , Hong XU , Zhiping MAO , Linping ZHANG . BiOBr/NH2-MIL-101(Fe): Preparation and performance on photocatalytic reduction of CO2. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1765-1775. doi: 10.11862/CJIC.20250103
 - 
				[9]
				
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
 - 
				[10]
				
Xiaochen Zhang , Fei Yu , Jie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026
 - 
				[11]
				
Xinwan Zhao , Yue Cao , Minjun Lei , Zhiliang Jin , Tsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152
 - 
				[12]
				
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
 - 
				[13]
				
Yupeng TANG , Haiying YANG , Fan JIN , Nan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460
 - 
				[14]
				
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
 - 
				[15]
				
Yun Chen , Daijie Deng , Li Xu , Xingwang Zhu , Henan Li , Chengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-. doi: 10.1016/j.actphy.2025.100144
 - 
				[16]
				
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
 - 
				[17]
				
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
 - 
				[18]
				
Yajuan Xing , Hui Xue , Jing Sun , Niankun Guo , Tianshan Song , Jiawen Sun , Yi-Ru Hao , Qin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046
 - 
				[19]
				
Xinyu Xu , Jiale Lu , Bo Su , Jiayi Chen , Xiong Chen , Sibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153
 - 
				[20]
				
Pengzi Wang , Wenjing Xiao , Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(0)
 - Abstract views(798)
 - HTML views(26)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: