Citation: WU Shao-Gui, FENG Dan. Free Energy Calculation for Base Pair Dissociation in a DNA Duplex[J]. Acta Physico-Chimica Sinica, ;2016, 32(5): 1282-1288. doi: 10.3866/PKU.WHXB201602185
-
DNA is the main genetic material for living organisms including many viruses. DNA duplex, coded with A=T and G≡C base pairs, is well suited for biological information storage. The interactions between two bases in a base pair contribute to the stability of DNA duplex, and are further related to gene replication and transcription. In this study, we use all-atom Molecular dynamics (MD) simulations combined with Umbrella sampling (US) method to determine the free energy profiles and explore the molecular details for base pair dissociations. Four groups of DNA duplexes with different sequences have been constructed and a total of 4.3 μs MD simulations have been carried out. In the potential of mean force (PMF) profile for G≡C base pair dissociation (denoted as PMF-PGC), we observed three peaks, which correspond to the three moments G≡C base pair loses its three hydrogen bonds respectively. Differently, A=T base pair loses its two hydrogen bonds within a very short time. As a result, only one hydrogen bond rupture peak was observed in its PMF curve (denoted as PMF-PAT). Compared with PMF-PAT, the overall free energy barrier in PMF-PGC is higher, which is due to the better stability of G≡C than A=T. In the latter sections of both PMFs, free energies are still increasing, which is mainly resulted from the rigidity of DNA duplex backbone. We have also investigated the impact of neighboring base pairs on the stability of middle one. It is found that neighboring G≡C base pairs increase the stability of A=T base pair while neighboring C≡G base pairs reduce the stability of A=T base pair. Additionally, neighboring T=A base pairs have little influence on the stability of A=T base pair.
-
-
[1]
(1) Cressey, D. Nature 2015, 526 (7573), 307. doi: 10.1038/nature.2015.18515
-
[2]
(2) Peyrard, M.; Bishop, A. R. Phys. Rev. Lett. 1989, 62 (23), 2755. doi: 10.1103/PhysRevLett.62.2755
-
[3]
(3) Santalucia, J. Proc. Natl. Acad. Sci. U. S. A. 1998, 95 (4), 1460. doi: 10.1073/pnas.95.4.1460
-
[4]
(4) Wu, S. G.; Gao, X. T.; Li, Q.; Liao, J.; Xu, C. G. Acta Phys. -Chim. Sin. 2015, 31 (9), 1803. [伍绍贵, 高晓彤, 李权, 廖杰, 徐成刚. 物理化学学报, 2015, 31 (9), 1803]. doi: 10.3866/PKU.WHXB201508062
-
[5]
(5) Meng, X. M.; Zhang, S. L.; Zhang, Q. G. Acta Phys. -Chim. Sin. 2016, 32 (2), 436. [孟现美, 张少龙, 张庆刚. 物理化学学报, 2016, 32 (2), 436]. doi: 10.3866/PKU.WHXB201511302
-
[6]
(6) Silva, D. A.; Weiss, D. R.; Avila, F. P.; Da, L. T.; Levitt, M.; Wang, D.; Huang, X. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (21), 7665. doi: 10.1073/pnas.1315751111
-
[7]
(7) Mackerell, A. D.; Banavali, N. K. J. Comput. Chem. 2000, 21 (2), 105. doi: 10.1002/(SICI)1096-987X(20000130)21:2<105::AID-JCC3>3.0.CO;2-P
-
[8]
(8) Ge, Z.; Li, Q.; Wang, Y. J. Chem. Theory Comput. 2014, 10 (7), 2751. doi: 10.1021/ct500194s
-
[9]
(9) Delemotte, L.; Tarek, M. J. Membr. Biol. 2012, 245 (9), 531. doi: 10.1007/s00232-012-9434-6
-
[10]
(10) Da, L.; Avila, F. P.; Wang, D.; Huang, X. PLoS Comput. Biol. 2013, 9 (4), e1003020. doi: 10.1371/journal.pcbi.1003020
-
[11]
(11) Yang, L. J.; Gao, Y. Q. Acta Phys. -Chim. Sin. 2016, 32 (1), 313. [杨立江, 高毅勤. 物理化学学报, 2016, 32 (1), 313.] doi: 10.3866/PKU.WHXB201512161
-
[12]
(12) Kutzner, C.; Van Der Spoel, D.; Fechner, M.; Lindahl, E.; Schmitt, U.W.; De Groot, B. L.; Grubmüller, H. J. Comput. Chem. 2007, 28 (12), 2075. doi: 10.1002/jcc.20703
-
[13]
(13) Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M. R.; Smith, J. C.; Kasson, P. M.; van der Spoel, D. Bioinformatics 2013, 29 (7), 845. doi: 10.1093/bioinformatics/btt055
-
[14]
(14) Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4 (3), 435. doi: 10.1021/ct700301q
-
[15]
(15) Perez, A.; Marchan, I.; Svozil, D.; Sponer, J.; Cheatham, T. E., III; Laughton, C. A.; Orozco, M. Biophys. J. 2007, 92 (11), 3817. doi: 10.1529/biophysj.106.097782
-
[16]
(16) Miyamoto, S.; Kollman, P. A. J. Comput. Chem. 1992, 13 (8), 952. doi: 10.1002/jcc.540130805
-
[17]
(17) Ito, H. O.; Soutome, S. M. J. Microbiol. Methods 2003, 55 (1), 29. doi: 10.1016/S0167-7012(03)00111-8
-
[18]
(18) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103 (19), 8577. doi: 10.1063/1.470117
-
[19]
(19) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98 (12), 10089. doi: 10.1063/1.464397
-
[20]
(20) Berendsen, H. J.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. J. Chem. Phys. 1984, 81 (8), 3684. doi: 10.1063/1.448118
-
[21]
(21) Bussi, G.; Donadio, D.; Parrinello, M. J. Chem. Phys. 2007, 126 (1), 014101. doi: 10.1063/1.2408420
-
[22]
(22) Zimmermann, K. J. Comput. Chem. 1991, 12 (3), 310. doi: 10.1002/jcc.540120305
-
[23]
(23) Isralewitz, B.; Gao, M.; Schulten, K. Curr. Opin. Struc. Biol. 2001, 11, 224. doi: 10.1016/S0959-440X(00)00194-9
-
[24]
(24) Hub, J. S.; De Groot, B. L.; Van Der Spoel, D. J. Chem. Theory Comput. 2010, 6 (12), 3713. doi: 10.1021/ct100494z
-
[25]
(25) Huang, X.; Wang, D.; Weiss, D. R.; Bushnell, D. A.; Kornberg, R. D.; Levitt, M. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (36), 15745. doi: 10.1073/pnas.1009898107
-
[1]
-
-
[1]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[2]
Yinglian LI , Chengcheng ZHANG , Xinyu ZHANG , Xinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087
-
[3]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[4]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[5]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[6]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[7]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[8]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[9]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[10]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[11]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[12]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[13]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[14]
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
-
[15]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
-
[16]
Jia Huo , Jia Li , Yongjun Li , Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075
-
[17]
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
-
[18]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[19]
Donghui PAN , Yuping XU , Xinyu WANG , Lizhen WANG , Junjie YAN , Dongjian SHI , Min YANG , Mingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468
-
[20]
Peng GENG , Guangcan XIANG , Wen ZHANG , Haichuang LAN , Shuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(731)
- HTML views(44)