Citation: LI Bao-Qing, YUAN Wen-Hui, LI Li. Adsorption of Pb2+ and Cd2+ on Graphene Nanosheets Prepared Using Thermal Exfoliation[J]. Acta Physico-Chimica Sinica, ;2016, 32(4): 997-1004. doi: 10.3866/PKU.WHXB201602182
-
Graphene nanosheets (GNSs) were prepared using oxidation of graphite powder followed by rapid thermal exfoliation under a nitrogen atmosphere. The as-prepared samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy. The specific surface area was determined using the nitrogen adsorption and desorption method. These analytic techniques revealed that the samples possessed a curled morphology consisting of a thin paper-like structure, which was made of a few graphite layers (approximately four layers) and a large specific surface area (628.5 m2·g-1). The effects of pH, adsorption time, temperature and initial concentration of Pb2+ and Cd2+ on adsorption onto the GNSs were investigated. The maximum adsorption capacities of GNSs for Pb2+ and Cd2+ ions were approximately 460.20 and 72.39 mg·g-1, respectively. These results indicate that the resulting high-quality GNSs can be used as an attractive adsorptive material for removing Pb2+ and Cd2+ from water.
-
Keywords:
- Graphene,
- Thermal exfoliation,
- Characterization,
- Adsorption,
- Heavy metal ion
-
-
[1]
(1) Gaur, V. K.; Gupta, S. K.; Pandey, S. D.; Gopal, K.; Misra, V. Environ. Monit. Assess. 2005, 102, 419. doi: 10.1007/s10661-005-6395-6
-
[2]
(2) Wu, G.; Li, L. Y. J. Contam. Hydrol. 1998, 33, 313. doi: 10.1016/S0169-7722(98)00075-8
-
[3]
(3) Kikuchi, Y.; Qian, Q.; Machida, M.; Tatsumoto, H. Carbon 2006, 44, 195. doi: 10.1016/j.carbon.2005.07.040
-
[4]
(4) Gardea-Torresdey, J.; Hejazi, M.; Tiemann, K.; Parsons, J. G.; Duarte-Gardea, M.; Henning, J. J. Hazard. Mater. B 2002, 91, 95. doi: 10.1016/S0304-3894(01)00363-6
-
[5]
(5) Dabrowski, A. Adv. Colloid Interface 2001, 93, 135. doi: 10.1016/S0001-8686(00)00082-8
-
[6]
(6) Lagadic, I. L.; Mitchell, M. K.; Payne, B. D. Environ. Sci. Technol. 2001, 35, 984. doi: 10.1021/es001526m
-
[7]
(7) Machida, M.; Yamazaki, R.; Aikawa, M.; Tatsumoto, H. Sep. Purif. Technol. 2005, 46, 88. doi: 10.1016/j.seppur.2005.04.015
-
[8]
(8) Machida, M.; Mochimaru, T.; Tatsumoto, H. Carbon 2006, 44, 2681. doi: 10.1016/j.carbon.2006.04.003
-
[9]
(9) Chae, H. K.; Siberio-Pérez, D. Y.; Kim, J. Nature 2004, 427, 523. doi: 10.1038/nature02311
-
[10]
(10) Yang, Z.; Xia, Y.; Mokaya, R. J. Am. Chem. Soc. 2007, 129, 1673. doi: 10.1021/ja067149g
-
[11]
(11) Wu, W. Q.; Yang, Y.; Zhou, H. H.; Ye, T. T.; Huang, Z. Y.; Liu, R.; Kuang, Y. F. Water Air Soil Pollut. 2013, 224, 1372. doi: 10.1007/s11270-012-1372-5
-
[12]
(12) Shim, J.W.; Park, S. J.; Ryu, S. K. Carbon 2001, 39, 1635. doi: 10.1016/S0008-6223(00)00290-6
-
[13]
(13) Machida, M.; Aikawa, M.; Tatsumoto, H. J. Hazard. Mater. B 2005, 120, 271. doi: 10.1016/j.jhazmat.2004.11.029
-
[14]
(14) Mohan, D.; Singh, K. P. Water Res. 2002, 36, 2304. doi: 10.1016/S0043-1354(01)00447-X
-
[15]
(15) Leyva-Ramos, R.; Bernal-Jacome, L. A.; Acosta-Rodriguez, I. Sep. Purif. Technol. 2005, 45, 41. doi: 10.1016/j.seppur.2005.02.005
-
[16]
(16) Li, Y. H.; Ding, J.; Luan, Z.; Di, Z.; Zhu, Y.; Xu, C.;Wu, D.; Wei, B. Carbon 2003, 41, 2787. doi: 10.1016/S0008-6223(03)00392-0
-
[17]
(17) Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132. doi: 10.1021/cr900070d
-
[18]
(18) Sridhar, V.; Jeon, J. H.; Oh, I. K. Carbon 2010, 48, 2953. doi: 10.1016/j.carbon.2010.04.034
-
[19]
(19) Novoselov, K. S.; Geim, A. K.; Morozov S. V. Science 2004, 306, 666. doi: 10.1126/science.1102896
-
[20]
(20) Liang, M.; Zhi, L. J. Mater. Chem. 2009, 19, 5871. doi: 10.1039/b901551e
-
[21]
(21) Madadrang, C. J.; Kim, H. Y.; Gao, G. H.;Wang, N.; Zhu, J.; Feng, H.; Matthew Gorring, M.; Kasner, M. L.; Hou, S. F. ACS Appl. Mater. Interfaces 2012, 4, 1186. doi: 10.1021/am201645g
-
[22]
(22) Yang, S.; Li, L. Y.; Pei, Z. G.; Li, C. M.; Shan, X. Q.;Wen, B.; Zhang, S. Z.; Zheng, L. R.; Zhang, J.; Xie, Y. N.; Huang, R. X. Carbon 2014, 75, 227. doi: 10.1016/j.carbon.2014.03.057
-
[23]
(23) Tan, P.; Sun, J.; Hu, Y. Y.; Fang, Z.; Bi, Q.; Chen, Y. C.; Cheng, J. H. J. Hazard. Mater. 2015, 297, 251. doi: 10.1016/j.jhazmat.2015.04.068
-
[24]
(24) Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud' homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. J. Phys. Chem. B 2006, 110, 8535.
-
[25]
(25) Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017
-
[26]
(26) Wu, Z. S.; Ren, W.; Gao, L.; Liu, B.; Jiang, C.; Cheng, H. M. Carbon 2009, 47, 493. doi: 10.1016/j.carbon.2008.10.031
-
[27]
(27) Yuan, W. H.; Li, B. Q.; Li, L. Acta Phys. -Chim. Sin. 2011, 27, 2244. [袁文辉, 李保庆, 李莉. 物理化学学报, 2011, 27, 2244.] doi: 10.3866/PKU.WHXB20110838
-
[28]
(28) Yuan, W. H.; Li, B. Q.; Li, L. Appl. Surf. Sci. 2011, 257, 10183. doi: 10.1016/j.apsusc.2011.07.015
-
[29]
(29) Qian, J. S.; Jin, H. Y.; Chen, B. L.; Lin, M.; Lu, W.; Tang, W. M.; Xiong, W.; Chan, H. L.W.; Lau, S. P.; Yuan, J. K. Angew. Chem. Int. Edit. 2015, 54, 6800. doi: 10.1002/anie.201501261
-
[30]
(30) Moreno-Castilla, C.; López-Ramón, M. V.; Carrasco-Marín, F. Carbon 2000, 38, 1995. doi: 10.1016/S0008-6223(00)00048-8
-
[31]
(31) Scherrer, P. Göttinger Nachrichten 1918, 2, 98.
-
[32]
(32) Pan, D.;Wang, S.; Zhao, B.;Wu, M.; Zhang, H.;Wang, Y.; Jiao, Z. Chem. Mater. 2009, 21, 3136. doi: 10.1021/cm900395k
-
[33]
(33) Szabó, T.; Berkesi, O.; Dékány, I. Carbon 2005, 43, 3186. doi: 10.1016/j.carbon.2005.07.013
-
[34]
(34) Wang, G. X.; Yang, J.; Park, J.; Gou, X. L.;Wang, B.; Liu, H.; Yao, J. J. Phys. Chem. C 2008, 112, 8192. doi: 10.1021/jp710931h
-
[35]
(35) Guo, P.; Song, H.; Chen, X. Electrochem. Commun. 2009, 11, 1320. doi: 10.1016/j.elecom.2009.04.036
-
[36]
(36) Paek, S. M.; Yoo, E. J.; Honma, I. Nano Lett. 2009, 9, 72. doi: 10.1021/nl802484w
-
[37]
(37) Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. Nature 2007, 446, 60. doi: 10.1038/nature05545
-
[38]
(38) Jung, I.; Pelton, M.; Piner, R.; Dikin, D. A.; Stankovich, S.; Watcharotone, S. Nano Lett. 2007, 7, 3569. doi: 10.1021/nl0714177
-
[39]
(39) Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cançado, L. G.; Jorio, A.; Saito, R. Phys. Chem. Chem. Phys. 2007, 9, 1276. doi: 10.1039/b613962k
-
[40]
(40) Liu, M. X.; Gan, L. H.; Xiong, W.; Zhao, F. Q.; Fan, X. Z.; Zhu, D. Z.; Xu, Z. J.; Hao, Z. X.; Chen, L.W. Energy Fuel. 2013, 27, 1168. doi: 10.1021/ef302028j
-
[41]
(41) Liu, M. X.; Gan, L. H.; Xiong, W.; Xu, Z. J.; Zhu, D. Z.; Chen, L.W. J. Mater. Chem. A 2014, 2, 2555.
-
[42]
(42) Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.;Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558. doi: 10.1016/j.carbon.2007.02.034
-
[43]
(43) Stafiej, A.; Pyrzynska, K. Sep. Purif. Technol. 2007, 58, 49. doi: 10.1016/j.seppur.2007.07.008
-
[44]
(44) Deng, X. J.; Lv, L. L.; Li, H.W.; Luo, F. J. Hazard. Mater. 2010, 183, 923. doi: 10.1016/j.jhazmat.2010.07.117
-
[45]
(45) Kabbashi, N. A.; Atieh, M. A.; Al-Mamun, A.; Mirghami, M. E.; Alam, M. D. Z.; Yahya, N. J. Environ. Sci. 2009, 21, 539. doi: 10.1016/S1001-0742(08)62305-0
-
[46]
(46) Li, Y. H.; Ding, J.; Luan, Z.; Di, Z.; Zhu, Y.; Xu, C.;Wu, D.; Wei, B. Carbon 2003, 41, 2787. doi: 10.1016/S0008-6223(03)00392-0
-
[47]
(47) Wang, H. J.; Zhou, A. L.; Peng, F.; Yu, H.; Chen, L. F. Mater. Sci. Eng. A 2007, 466, 201. doi: 10.1016/j.msea.2007.02.097
-
[48]
(48) Li, Y. H.;Wang, S.; Luan, Z.; Ding, J.; Xu, C.;Wu, D. Carbon 2003, 41, 1057. doi: 10.1016/S0008-6223(02)00440-2
-
[49]
(49) Wang, J.; Chen, B. L. Chem. Eng. J. 2015, 281, 379. doi: 10.1016/j.cej.2015.06.102
-
[50]
(50) Sanchez-Polo, M.; Rivera-Utrilla, J. Environ. Sci. Technol. 2002, 36, 3850. doi: 10.1021/es0255610
-
[51]
(51) Rivera-Utrilla, J.; Sanchez-Polo, M. Water. Res. 2003, 37, 3335. doi: 10.1016/S0043-1354(03)00177-5
-
[52]
(52) Yushin, G.; Dash, R.; Jagiello, J.; Fischer, J. E.; Gogotsi, Y. Adv. Funct. Mater. 2006, 16, 2288. doi: 10.1002/adfm.200500830
-
[1]
-
-
[1]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[2]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[3]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[4]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[5]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[6]
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
-
[7]
Qianqian Zhong , Yucui Hao , Guotao Yu , Lijuan Zhao , Jingfu Wang , Jian Liu , Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013
-
[8]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[9]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[10]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[11]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[12]
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
-
[13]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[14]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[15]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[16]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[17]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[18]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[19]
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
-
[20]
Shasha Ma , Zujin Yang , Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008
-
[1]
Metrics
- PDF Downloads(5)
- Abstract views(285)
- HTML views(30)