Citation: XIAO Gan, ZHANG Yu-Sheng, JIANG Guang-Jun. Systematic Construction and Validation of the Reduced Chemical Kinetic Model of Gasoline Multi-Component Surrogate Fuel[J]. Acta Physico-Chimica Sinica, ;2016, 32(4): 879-892. doi: 10.3866/PKU.WHXB201601261
-
Asystematic multi-stage mechanismreduction strategy for performing skeletal reductions of gasoline four-component surrogate fuel is presented. The approach includes the directed relation graph with error propagation, peak concentration analysis, linear isomer lumping, principal component analysis, temperature sensitivity analysis and rate of production analysis. The final reduced mechanism comprises 149 species and 414 reactions with embedded cross-reactions, which is suitable for homogeneous charge compression ignition (HCCI) engine application. Comparisons between computational and experimental data including the shock tube and rapid compression machine, indicate that the new reduced mechanism can provide good predictability of the ignition delay over extensive parameter space. Applying the reduced mechanism to the HCCI single zone model also shows satisfactory combustion and emission characteristics of the boosted HCCI combustion. Further heat release analysis demonstrates that R + O2 are the key reactions controlling the intermediate temperature heat release and under high pressure and low temperature conditions, iso-octane is the most important species resulting in a large portion of heat release. After the addition of 2-pentene, the new four component model displays better predictability than the three component model, especially relative to the firststage ignition delay. Based on these new findings, we can use different composition ratios to arbitrarily control the combustion phasing of HCCI combustion.
-
-
[1]
(1) Kalghatgi, G. T. Proc. Combust. Inst. 2015, 35, 101. doi: 10.1016/j.proci.2014.10.002
-
[2]
(2) Reitz, R. D. Combust. Flame 2013, 160, 1. doi: org/10.1016/j.combustflame.2012.11.002
-
[3]
(3) Battin-Leclerc, F.; Blurock, E.; Bounaceur, R.; Fournet, R.; Glaude, P.; Herbinet, O.; Sirjean, B.;Warth, V. Chem. Soc. Rev. 2011, 40, 4762. doi: 10.1039/C0CS00207K
-
[4]
(4) Dryer, F. L. Proc. Combust. Inst. 2015, 35, 117. doi: org/10.1016/j.proci.2014.09.008
-
[5]
(5) Pitz, W. J.; Cernansky, N. P.; Dryer, F. L.; Egolfopoulos, F. N.; Farrell, J. T.; Friend, D. G.; Pitsch, H. SAE Tech. Pap. Ser. 2007, 2007-01-0175. doi: 10.4271/2007-01-0175
-
[6]
(6) Pera, C.; Knop, V. Fuel 2012, 96, 59. doi: 10.1016/j.fuel.2012.01.008
-
[7]
(7) Badra, J. A.; Bokhumseen, N.; Mulla, N.; Sarathy, S. M.; Farooq, A.; Kalghatgi, G. T.; Gaillard, P. Fuel 2015, 160, 458. doi: org/10.1016/j.fuel.2015.08.007
-
[8]
(8) Gauthier, B. M.; Davidson, D. F.; Hanson, R. K. Combust. Flame 2004, 139, 300. doi: 10.1016/j.combustflame.2004.08.015
-
[9]
(9) Kukkadapu, G.; Kumar, K.; Sung, C. J.; Mehl, M.; Pitz, W. J. Combust. Flame 2012, 159, 3066. doi: org/10.1016/j.combustflame.2012.05.008
-
[10]
(10) Dec, J. E.; Yang, Y. SAE Tech. Pap. Ser. 2010, 2010-01-1086. doi: 10.4271/2010-01-1086
-
[11]
(11) Yang, Y.; Dec, J. E.; Dronniou, N.; Sjoberg, M.; Cannella, W. SAE Tech. Pap. Ser. 2011, 2011-01-1359. doi: 10.4271/2011-01-1359
-
[12]
(12) Mehl, M.; Chen, J. Y.; Pitz, W. J.; Sarathy, S. M.;Westbrook, C. K. Energy Fuels 2011, 25, 5215. doi: org/10.1021/ef201099y
-
[13]
(13) Perez, P. L.; Boehman, A. L. Energy Fuels 2012, 26, 6106. doi: org/10.1021/ef300503b
-
[14]
(14) Naik, C. V.; Pitz, W. J.;Westbrook, C. K.; Sjoberg, M.; Dec, J. E.; Orme, J.; Curran, H. J.; Simmie, J. M. SAE Tech. Pap. Ser. 2005, 2005-01-3741. doi: 10.4271/2005-01-3741
-
[15]
(15) Fikri, M.; Herzler, J.; Starke, R.; Schulz, C.; Roth, P.; Kalghatgi, G. T. Combust. Flame 2008, 152, 276. doi: 10.1016/j.combustflame.2007.07.010
-
[16]
(16) Andrae, J. C. G. Fuel 2008, 87, 2013. doi: 10.1016/j.fuel.2007.09.010
-
[17]
(17) Yahyaoui, M.; Djebaïli-Chaumeix, N.; Dagaut, P.; Paillard, C. E.; Gail, S. Proc. Combust. Inst. 2007, 31, 385. doi: 10.1016/j.proci.2006.07.179
-
[18]
(18) Sarathy, S. M.; Kukkadapu, G.; Mehl, M.;Wang, W. J.; Javed, T.; Park, S.; Oehlschlaeger, M. A.; Farooq, A.; Pitz, W. J.; Sung C. J. Proc. Combust. Inst. 2015, 35, 249. doi: org/10.1016/j.proci.2014.05.122
-
[19]
(19) Ahmed, A.; Goteng, G.; Shankar, V. S. B.; Qurashi, K. A.; Roberts, W. L.; Sarathy, S. M. Fuel 2015, 143, 290. doi: org/10.1016/j.fuel.2014.11.022
-
[20]
(20) Lu, T. F.; Law, C. K. Prog. Energy Combust. Sci. 2009, 35, 192. doi: 10.1016/j.pecs.2008.10.002
-
[21]
(21) Lu, T. F.; Law, C. K. Proc. Combust. Inst. 2005, 30, 1333. doi: 10.1016/j.proci.2004.08.145
-
[22]
(22) Pepiot-Desjardins, P.; Pitsch, H. Combust. Flame 2008, 154, 67. doi: 10.1016/j.combustflame.2007.10.020
-
[23]
(23) Sun, W. T.; Chen, Z.; Gou, X. L.; Ju, Y. G. Combust. Flame 2010, 157, 1298. doi: 10.1016/j.combustflame.2010.03.006
-
[24]
(24) Luo, Z. Y.; Lu, T. F.; Maciaszek, M. J.; Som, S.; Longman, D. E. Energy Fuels 2010, 24, 6283. doi: 10.1021/ef1012227
-
[25]
(25) Fang, Y. M.;Wang, Q. D.;Wang, F.; Li, X. Y. Acta Phys. -Chim. Sin. 2012, 28, 2536. [方亚梅, 王全德, 王繁, 李象远. 物理化学学报, 2012, 28, 2536.] doi: 10.3866/PKU.WHXB201208201
-
[26]
(26) Hua, X. X.;Wang, J. B.;Wang, Q. D.; Tan, N. X.; Li, X. Y. Acta Phys. -Chim. Sin. 2011, 27, 2755. [华晓筱, 王静波, 王全德, 谈宁馨, 李象远. 物理化学学报, 2011, 27, 2755.] doi: 10.3866/PKU.WHXB20112755
-
[27]
(27) Liu, Y. D.; Jia, M.; Xie, M. Z.; Pang, B. Energy Fuels 2013, 27, 4899. doi: org/10.1021/ef4009955
-
[28]
(28) Zhang, Q. F.; Zheng, Z. L.; He, Z.W.;Wang, Y. Acta Phys. -Chim. Sin. 2011, 27, 530. [张庆峰, 郑朝蕾, 何祖威, 王迎. 物理化学学报, 2011, 27, 530.] doi: 10.3866/PKU.WHXB20110334
-
[29]
(29) Mehl, M.; Pitz, W. J.;Westbrook, C. K.; Curran, H. J. Proc. Combust. Inst. 2011, 33, 193. doi: 10.1016/j.proci.2010.05.027
-
[30]
(30) Lu, T. F.; Ju, Y. G.; Law, C. K. Combust. Flame 2001, 126, 1445. doi: 10.1016/S0010-2180(01)00252-8
-
[31]
(31) Lu, T. F.; Law, C. K. Combust. Flame 2008, 154, 153. doi: 10.1016/j.combustflame.2007.11.013
-
[32]
(32) Turanyi, T. J. Math. Chem. 1990, 5, 203. doi: 10.1007/BF01166355
-
[33]
(33) Maroteaux, F.; Noel, L. Combust. Flame 2006, 146, 246. doi: 10.1016/j.combustflame.2006.03.006
-
[34]
(34) Lutz, A. E.; Kee, R. J.; Miller, J. A. SENKIN: a Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis. Report SAND87-8248. Sandia, 1987.
-
[35]
(35) Kee, R. J.; Grear, J. F.; Smooke, M. D.; Miller, J, A. Chemkin-II: a Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics. Report SAND89-8009. Sandia, 1989.
-
[36]
(36) Luo, Z. Y.; Plomer, M.; Lu, T. F.; Som, S.; Longman, D. E. Combust. Theor. Model. 2012, 16, 369. doi: org/10.1080/13647830.2011.631034
-
[37]
(37) Xiao, G..; Zhang, Y. S.; Lang, J. Chinese Internal Combustion Engine Engineering 2013, 34, 20. [肖干, 张煜盛, 郎静. 内燃机工程, 2013, 34, 20.]
-
[38]
(38) Sjoberg, M.; Dec, J.; Hwang, J. Y. SAE Tech. Pap. Ser. 2007, 2007-01-0207. doi: 10.4271/2007-01-0207
-
[39]
(39) Vuilleumier, D.; Kozarac, D.; Mehl, M.; Saxena, S.; Pitz, W.; Dibble, R.; Chen, J. Y.; Sarathy, M.; Combust. Flame 2014, 161, 680. doi: 10.1016/j.combustflame.2013.10.008
-
[40]
(40) Yang, Y.; Dec, J.; Sjoberg, M.; Ji, C. S. Combust. Flame 2015, 162, 4008. doi: 10.1016/j.combustflame.2015.07.040
-
[41]
(41) Mehl, M.; Pitz, W.;Westbrook, C. K.; Yasunag, K.; Conroy, C.; Curran, J. Proc. Combust. Inst. 2011, 33, 201. doi: 10.1016/j.proci.2010.05.040
-
[1]
-
-
[1]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[2]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[3]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[4]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[5]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[6]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[7]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[8]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[9]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[10]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[11]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[12]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[13]
Fei Liu , Dong-Yang Zhao , Kai Sun , Ting-Ting Yu , Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047
-
[14]
Zunyuan Xie , Lijin Yang , Zixiao Wan , Xiaoyu Liu , Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137
-
[15]
Kai Yang , Gehua Bi , Yong Zhang , Delin Jin , Ziwei Xu , Qian Wang , Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045
-
[16]
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105
-
[17]
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
-
[18]
Tingting Yu , Si Chen , Lianglong Sun , Tongtong Shi , Kai Sun , Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022
-
[19]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[20]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(285)
- HTML views(36)