Citation:
LIU Jian-Hong, LÜ Cun-Qin, JIN Chun, WANG Gui-Chang. First-Principles Study of Effect of CO to Oxidize Methanol to Formic Acid in Alkaline Media on PtAu(111) and Pt(111) Surfaces[J]. Acta Physico-Chimica Sinica,
;2016, 32(4): 950-960.
doi:
10.3866/PKU.WHXB201601191
-
Density functional theory calculations have been performed to investigate methanol oxidation to formic acid on PtAu(111) and Pt(111) surfaces with and without CO in alkaline media. The calculated results show that the pre-adsorbed CO species promotes almost every step involved in the oxidation of methanol on PtAu(111) and Pt(111) surfaces, which is similar to that observed on a Au(111) surface. These findings may be attributed to the relatively high stability and strong basicity of the OH species induced by the adsorption of CO, and the enhanced ability to strip the H atoms.
-
-
-
[1]
(1) Zhang, K.; Yang, W.; Ma, C.;Wang, Y.; Sun, C.W.; Chen, Y. J.; Duchesne, P.; Zhou, J. G.;Wang, J.; Hu, Y. F.; Banis, M. N.; Zhang, P.; Li, F.; Li, J. Q.; Chen, L. Q. NPG Asia Mater. 2015, 7, e153. doi: 10.1038/am.2014.122
-
[2]
(2) Sun, S.; Zhang, G.; Gauquelin, N.; Chen, N.; Zhou, J.; Yang, S.; Chen, W.; Meng, X.; Geng, D.; Banis, M. N.; Li, R.; Ye, S.; Knights, S.; Botton, G. A.; Sham, T.; Sun, X. Sci. Rep. 2013, 3, 1775. doi: 10.1038/srep01775
-
[3]
(3) Ganesan, R.; Lee, J. S. Angew. Chem. Int. Edit. 2005, 44, 6557. doi: 10.1002/anie.200501272
-
[4]
(4) Wasmus, S.; Küver, A. J. Electroanal. Chem. 1999, 461, 14. doi: 10.1016/S0022-0728(98)00197-1
-
[5]
(5) Roberts, J. L., Jr.; Sawyer, D. T. Electrochim. Acta 1965, 10, 989. doi: 10.1016/0013-4686(65)80011-1
-
[6]
(6) Rodriguez, P.; Kwon, Y.; Koper, M. T. M. Nat. Chem. 2012, 4, 177. doi: 10.1038/nchem.1221
-
[7]
(7) Zope, B. N.; Hibbits, D. D.; Neurock, M.; Davis, R. J. Science 2010, 330, 74. doi: 10.1126/science.1195055
-
[8]
(8) Ketchie, W. C.; Fang, Y. L.;Wong, M. S.; Murayama, M.; Davis, R. J. J. Catal. 2007, 250, 94. doi: 10.1016/j.jcat.2007.06.001
-
[9]
(9) Burke, L. D.; Nugent, P. F. Gold Bull. 1998, 31, 39. doi: 10.1007/BF03214760
-
[10]
(10) Kita, H.; Nakajima, H.; Hayashi, K. J. Electroanal. Chem. 1985, 190, 141. doi: 10.1016/0022-0728(85)80083-8
-
[11]
(11) Zhang, T. F.; Liu, Z. P.; Driver, S. M.; Pratt, S. J.; Jenkins, S. J.; King, D. A. Phys. Rev. Lett. 2005, 95, 266102. doi: 10.1103/PhysRevLett.95.266102
-
[12]
(12) Gan, L. Y.; Zhao, Y. J. J. Chem. Phys. 2010, 133, 094703. doi: 10.1063/1.3483235
-
[13]
(13) Liu, Y. H.;Wei, L.; Hu, Y. Z.; Huang, X. Y.;Wang, J. Q.; Li, J. Q.; Hu, X. L.; Zhuang, N. F. J. Alloy. Compd. 2016, 656, 452. doi: 10.1016/j.jallcom.2015.10.004
-
[14]
(14) Shubina, T. E.; Hartnig, C.; Koper, M. T. M. Phys. Chem. Chem. Phys. 2004, 6, 4215. doi: 10.1039/B407669A
-
[15]
(15) Wang, L.; He, C. Z.; Zhang, W. H.; Li, Z. Y.; Yang, J. L. J. Phys. Chem. C 2014, 118, 17511. doi: 10.1021/jp501620h
-
[16]
(16) Lv, C. Q.; Liu, J. H.;Wang, H.;Wang, G. C. Catal. Commun. 2015, 60, 60. doi: 10.1016/j.catcom.2014.11.013
-
[17]
(17) Yuan, D.W.; Gong, X. G.;Wu, R. Q. J. Chem. Phys. 2008, 128, 064706. doi: 10.1063/1.2835545
-
[18]
(18) Zhong, W. H.; Liu, Y. X.; Zhang, D. J. J. Phys. Chem. C 2012, 116, 2994. doi: 10.1021/jp210304z
-
[19]
(19) Montero, M. A.; Gennero de Chialvo, M. R.; Chialvo, A. C. Int. J. Hydrog. Energy 2011, 36, 3811. doi: 10.1016/j.ijhydene.2010.12.115
-
[20]
(20) Ren, H.; Humbert, M. P.; Menning, C. A.; Chen, J. G.; Shu, Y. Y.; Singh, U. G.; Cheng, W. C. Appl. Catal. A 2010, 375, 303. doi: 10.1016/j.apcata.2010.01.018
-
[21]
(21) Qiu, C. C.; Guo, Y. G.; Zhang, J. T.; Ma, H. Y.; Cai, Y. Q. Mater. Chem. Phys. 2011, 127, 484. doi: 10.1016/j.matchemphys.2011.02.041
-
[22]
(22) Xu, J. B.; Zhao, T. S.; Yang, W.W.; Shen, S. Y. Int. J. Hydrog. Energy 2010, 35, 8699. doi: 10.1016/j.ijhydene.2010.05.008
-
[23]
(23) Yang, L.; Chen, J. H.; Zhong, X. X.; Cui, K. Z.; Xu, Y.; Kuang, Y. F. Colloids Surf. A 2007, 295, 21. doi: 10.1016/j.colsurfa.2006.08.023
-
[24]
(24) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251. doi: 10.1103/PhysRevB.49.14251
-
[25]
(25) Kresse, G.; Furthmüller, J. Comp. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0
-
[26]
(26) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671. doi: 10.1103/PhysRevB.46.6671
-
[27]
(27) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758
-
[28]
(28) Blöhl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/ PhysRevB.50.17953
-
[29]
(29) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188
-
[30]
(30) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys. 2000, 113, 9901. doi: 10.1063/1.1329672
-
[31]
(31) Kittel, C. Introduction to Solid State Physics, 8th ed.;Wiley: New York, 2004
-
[32]
(32) Hammer, B. Surf. Sci. 2000, 459, 323. doi: 10.1016/S0039-6028(00)00467-2
-
[33]
(33) Greeley, J.; Mavrikakis, M. J. Am. Chem. Soc. 2004, 126, 3910. doi: 10.1021/ja037700z
-
[34]
(34) Pacchioni, G.; Ricart, J. M.; Illas, F. J. Am. Chem. Soc. 1994, 116, 10152. doi: 10.1021/ja00101a038
-
[35]
(35) Torres, D.; Lopez, N.; Illas, F.; Lambert, R. M. Angew. Chem. Int. Edit. 2007, 46, 2055. doi: 10.1002/ange.200603803
-
[36]
(36) Zhao, S.; Ma, X. D.; Pang, Q.; Sun, H.W.;Wang, G. C. Phys. Chem. Chem. Phys. 2014, 16, 5553. doi: 10.1039/C3CP55048F
-
[1]
-
-
-
[1]
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
-
[2]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[3]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[4]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[5]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[6]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[7]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[8]
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
-
[9]
Jinghua Wang , Yanxin Yu , Yanbiao Ren , Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057
-
[10]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[11]
Zhanhui Yang , Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032
-
[12]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[13]
Renqing Lü , Shutao Wang , Fang Wang , Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119
-
[14]
Yong-Fang Shi , Sheng-Hua Zhou , Zuju Ma , Xin-Tao Wu , Hua Lin , Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455
-
[15]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[16]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[17]
Yanjie Li , Chaoqun Qu , Siqi Meng , Jiaqi Hu , Ze Gao , Hongji Xu , Rui Gao , Ming Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872
-
[18]
Chuyu Huang , Zhishan Liu , Linping Zhao , Zuxiao Chen , Rongrong Zheng , Xiaona Rao , Yuxuan Wei , Xin Chen , Shiying Li . Metal-coordinated oxidative stress amplifier to suppress tumor growth combined with M2 macrophage elimination. Chinese Chemical Letters, 2024, 35(12): 109696-. doi: 10.1016/j.cclet.2024.109696
-
[19]
Yunyan Li , Zimin Cai , Zhicheng Wang , Sifeng Zhu , Wendian Liu , Cheng Wang . Construction of biomimetic hybrid nanovesicles based on M1 macrophage-derived exosomes for therapy of cancer. Chinese Chemical Letters, 2025, 36(4): 109942-. doi: 10.1016/j.cclet.2024.109942
-
[20]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(376)
- HTML views(28)