Citation: CAO Hong-Yu, GAO Ling-Xing, TANG Qian, SU Jin-Hong, ZHENG Xue-Fang. Mechanism of Oxymyoglobin Oxidation Reaction Induced by Ultraviolet Light[J]. Acta Physico-Chimica Sinica, ;2016, 32(4): 872-878. doi: 10.3866/PKU.WHXB201601046 shu

Mechanism of Oxymyoglobin Oxidation Reaction Induced by Ultraviolet Light

  • Corresponding author: ZHENG Xue-Fang, 
  • Received Date: 9 November 2015
    Available Online: 28 December 2015

    Fund Project: 国家自然科学基金(21571025, 21271036) (21571025, 21271036)辽宁省教育厅科学技术研究项目(L2013470, L2013471)资助 (L2013470, L2013471)

  • Myoglobin (Mb) achieves its biological functions such as oxygen transfer and storage in the dark. In this research, we found that UV light irradiation could promote oxidation of ferroporphyrin, which significantly affected the physiological function of oxymyoglobin (MbO2). The blue shift of the Soret band and decreased intensities of Q-band reduction peaks at 544 and 580 nm observed in UV-Vis absorption spectra revealed that UV light could promote O2 dissociation, and consequently MbFe(Ⅱ) was oxidized to MbFe(Ⅲ). The effect sequence of wavelength on the strength of this photo-oxidation was 254 nm > 280 nm > 430 nm > 409 nm. CO could inhibit the photo-oxidation process, indicating that the strength of the sixth coordination bond of Fe with a gas molecule influences the degree of photo-oxidation. The H+ and OH- in the solution could also promote the photo-oxidation process. Irradiated by 254 and 280 nm light, free amino acids phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp) promoted the light oxidation reaction. Meanwhile, irradiation with 409 and 430 nm light had less influence on the UV-light-induced oxidation reaction under the same conditions. The results illustrated that in photo-induced oxidation of MbO2, the formation of an excited state of Fe(Ⅱ) with unpaired electrons upon irradiation is crucial process for O2 dissociation and Fe(Ⅱ) oxidation.
  • 加载中
    1. [1]

      (1) Wittenberg, J. B.;Wittenberg, B. A. Annu. Rev. Biophys. Biophys. Chem. 1990, 19, 217. doi: 10.1146/annurev.bb.19.060190.001245

    2. [2]

      (2) Takahashi, E.; Endoh, H.; Doi, K. Biophys. J. 2000, 78, 3252. doi: 10.1016/S0006-3495(00)76861-5

    3. [3]

      (3) Brunori, M. Trends Biochem. Sci. 2001, 26, 209. doi: 10.1016/ S0968-0004(01)01824-2

    4. [4]

      (4) Cossins, A.; Berenbrink, M. Nature 2008, 454, 416. doi: 10.1038/454416a

    5. [5]

      (5) Kachalova, G. S.; Popov, A. N.; Bartunik, H. D. Science 1999, 284, 473. doi: 10.1126/science.284.5413.473

    6. [6]

      (6) Chu, K.; Vojtchovsky, J.; McMahon, B. H.; Sweet, R. M.; Berendzen, J.; Schlichting, I. Nature 2000, 403, 921. doi: 10.1038/35002641

    7. [7]

      (7) Bazin, M.; Pierre, J.; Debey, P.; Santus, R. Eur. J. Biochem. 1982, 124, 539. doi: 10.1111/j.1432-1033.1982.tb06627.x

    8. [8]

      (8) Sakai, H.; Onuma, H.; Umeyama, M.; Takeoka, S.; Tsuchida, E. Biochemistry 2000, 39, 14595. doi: 10.1021/bi0014204

    9. [9]

      (9) Liang, X. Q.; Chen, G. F.; Zhang, X.; Liu, S. L.; Li, G. X. Photo-Chem. Photobiol. B 2008, 90, 53. doi: 10.1016/j.jphotobiol.2007.11.001

    10. [10]

      (10) Vorkink, W. P.; Cusanovich, M. A. Photochem. Photobiol. 1974, 19, 205. doi: 10.1111/php.1974.19.issue-3

    11. [11]

      (11) Masuda, T.; Minemura, A.; Yamauchi, K.; Kondo, M. J. Radiat Res. 1980, 21, 149. doi: 10.1269/jrr.21.149

    12. [12]

      (12) Winterle, J. S.; Einarsdóttir, Ó. Photochem. Photobiol. 2006, 82, 711. doi: 10.1562/2005-09-14-RA-684

    13. [13]

      (13) Wittenberg, J. B. Physiol. Rev. 1970, 50, 559.

    14. [14]

      (14) Scholander, P. F. Science 1960, 131, 585. doi: 10.1126/ science.131.3400.585

    15. [15]

      (15) Nollmann, M.; Etchegoin, P. Spectrochimica Acta Part A 2000, 56, 2817. doi: 10.1016/S1386-1425(00)00384-X

    16. [16]

      (16) Etchegoin, P.; Liem, H.; Maher, R. C.; Cohen, F.; Brown, R. J. C.; Milton, M. J. T.; Gallop, J. C. Chem. Phys. Lett. 2003, 367, 223. doi: 10.1016/S0009-2614(02)01705-0

    17. [17]

      (17) Franzen, S.; Kiger, L.; Poyart, C.; Martin, J. L. Biophys. J. 2001, 80, 2372. doi: 10.1016/S0006-3495(01)76207-8

    18. [18]

      (18) Ma, J. Y.; Zheng, X. F.; Guo, M.; Tang, Q.; Ma, J.; Gao, D. B.; Hu, J. H. Science in China Series B 2008, 51, 414. [马君燕, 郑学仿, 郭明, 唐乾, 马静, 高大彬, 胡皆汉. 中国科学B辑, 2008, 51, 414.] doi: 10.1007/s11426-008-0014-7

    19. [19]

      (19) Zhou, H.W.; Cao, H. Y.; Tang, Q.; Ma, J. Y.; Zhang, Y. Y.; Zheng, X. F. Chem. Res. Chin. Univ. 2011, 27 (6), 1060.

    20. [20]

      (20) An, L. M.; Cao, H. Y.; Tang, Q.; Zheng, X. F. Chin. J. Inorg. Chem. 2012, 28, 1461. [安良梅, 曹洪玉, 唐乾, 郑学仿. 无机化学学报, 2012, 28, 1461.]

    21. [21]

      (21) Liu, Y.W.; Cao, H. Y.; Tang, Q.; Zheng, X. F. Acta Chimica Sinica 2014, 72 (2), 246. [刘艳伟, 曹洪玉, 唐乾, 郑学仿. 化学学报, 2014, 72 (2), 246.] doi: 10.6023/A13101029

    22. [22]

      (22) Zhou, H.W.; Cao, H. Y.; Tang, Q.; An, L. M.; Zheng, X. F. Acta Chimica Sinica 2011, 69 (13), 1559. [周华伟, 曹洪玉, 唐乾, 安良梅, 郑学仿. 化学学报, 2011, 69 (13), 1559.]

    23. [23]

      (23) Cao, H. Y.; Liu, Y.W.; Zhao, J. M.; Guo, X. J.; Zheng, X. F. Protein & Peptide Letters 2015, 22, 853. doi: 10.2174/0929866522666150707115231

    24. [24]

      (24) Zhang, Y. J.; Tang, Q.; Cao, H. Y.; Zheng, X. F. Acta Phys. -Chim. Sin. 2013, 29 (8), 1785. [张玉姣, 唐乾, 曹洪玉, 郑学仿. 物理化学学报, 2013, 29 (8), 1785.] doi: 10.3866/PKU.WHXB201305271

    25. [25]

      (25) Huang, H. C.; Jiang, Z. F.; Zhu, H. J. Chemistry 2007, 70, 501. [黄汉昌, 姜招峰, 朱宏吉. 化学通报, 2007, 70, 501.]

  • 加载中
    1. [1]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    4. [4]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    5. [5]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    6. [6]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    7. [7]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    12. [12]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    13. [13]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    14. [14]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    15. [15]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    16. [16]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

Metrics
  • PDF Downloads(0)
  • Abstract views(420)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return