Citation: WANG Yue-Hong, LI Xiao-Yan, ZENG Yan-Li, MENG Ling-Peng, ZHANG Xue-Ying. Topological Analyses of Electron Density on π-hole Pnicogen Bonds in PO2X…PX3/PH2X (X = F, Cl, Br, CH3, NH2) Complexes[J]. Acta Physico-Chimica Sinica, ;2016, 32(3): 671-682. doi: 10.3866/PKU.WHXB201512293
-
Acting as a molecular linker, the pnicogen bond plays an important role in crystal engineering and supramolecular synthesis. The structures and properties of π-hole pnicogen-bonded complexes PO2X…PX3 and PO2X…PH2X (X = F, Cl, Br, CH3, NH2) were investigated by ab initio MP2/aug-cc-pVTZ calculations and topological analyses of electron density. Two sets of π-hole pnicogen-bonded complexes were found on the potential surfaces. Type-A complexes have P…P and type-B ones have P…X pnicogen bonds. The atoms-inmolecules (AIM) theory, electron localization function (ELF) theory, noncovalent interaction (NCI) index method as well as the adaptive natural density partitioning (AdNDP) approach were used to expand the nature of the interactions considered. The substituent groups strongly affect the properties of pnicogen bond interactions. Pnicogen bonds were covalent interactions for the electron-donating substituents (CH3, NH2), while they were noncovalent, partly covalent and covalent interactions when the substituents were electron-withdrawing groups. Natural bond orbital (NBO) analyses indicated that the larger the Wiberg bond order of the pnicogen-bonded interaction, the more covalent the bond and the greater its strength will be. In type-B conformations, charge transfer mainly occurs from an X lone pair of the PX3/PH2X molecule to the π*(P=O) orbital of PO2X.
-
-
[1]
(1) Politzer, P.; Murray, J. S. ChemPhysChem 2013, 14, 278. doi: 10.1002/cphc.201200799
-
[2]
(2) Metrangolo, P.; Meyer, F.; Pilati, T.; Resnati, G.; Terraneo, G.Angew Chem. Int. Edit. Engl. 2008, 47, 6114. doi: 10.1002/anie.v47: 33
-
[3]
(3) Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati, G. Accounts Chem. Res. 2005, 38, 386. doi: 10.1021/ar0400995
-
[4]
(4) Legon, A. C. Phys. Chem. Chem. Phys. 2010, 12, 7736. doi: 10.1039/c002129f
-
[5]
(5) Scheiner, S. Accounts Chem. Res. 2013, 46, 280. doi: 10.1021/ar3001316
-
[6]
(6) Zahn, S.; Frank, R.; Hey-Hawkins, E.; Kirchner, B. Chemistry2011, 17, 6034. doi: 10.1002/chem.v17.22
-
[7]
(7) Carré, F.; Chuit, C.; Corriu, R. J. P.; Monforte, P.; Nayyar, N.K.; Reyé, C. J. Organomet. Chem. 1995, 499, 147. doi: 10.1016/0022-328X(95)00318-K
-
[8]
(8) Scheiner, S. Phys. Chem. Chem. Phys. 2011, 13, 13860. doi: 10.1039/c1cp20427k
-
[9]
(9) Solimannejad, M.; Gharabaghi, M.; Scheiner, S. J. Chem. Phys. 2011, 134, 024312. doi: 10.1063/1.3523580
-
[10]
(10) Scheiner, S. J. Chem. Phys. 2011, 134, 094315. doi: 10.1063/1.3562209
-
[11]
(11) Adhikari, U.; Scheiner, S. Chem. Phys. Lett. 2012, 536, 30. doi: 10.1016/j.cplett.2012.03.085
-
[12]
(12) Adhikari, U.; Scheiner, S. J. Phys. Chem. A 2012, 116, 3487. doi: 10.1021/jp301288e
-
[13]
(13) Scheiner, S.; Adhikari, U. J. Phys. Chem. A 2011, 115, 11101. doi: 10.1021/jp2082787
-
[14]
(14) Scheiner, S. Int. J. Quantum Chem. 2013, 113, 1609. doi: 10.1002/qua.v113.11
-
[15]
(15) Del Bene, J. E.; Alkorta, I.; Sanchez-Sanz, G.; Elguero, J.Chem. Phys. Lett. 2011, 512, 184. doi: 10.1016/j.cplett.2011.07.043
-
[16]
(16) Del Bene, J. E.; Alkorta, I.; Sanchez-Sanz, G.; Elguero, J.J. Phys. Chem. A 2011, 115, 13724. doi: 10.1021/jp2094164
-
[17]
(17) Del Bene, J. E.; Alkorta, I.; Sanchez-Sanz, G.; Elguero, J.J. Phys. Chem. A 2012, 116, 3056. doi: 10.1021/jp300763d
-
[18]
(18) Alkorta, I.; Elguero, J.; Del Bene, J. E. J. Phys. Chem. A 2013, 117, 4981. doi: 10.1021/jp403651h
-
[19]
(19) Del Bene, J. E.; Alkorta, I.; Elguero, J. J. Phys. Chem. A 2013, 117, 11592. doi: 10.1021/jp409016q
-
[20]
(20) Del Bene, J. E.; Alkorta, I.; Elguero, J. J. Phys. Chem. A 2013, 117, 6893. doi: 10.1021/jp4063109
-
[21]
(21) Del Bene, J. E.; Alkorta, I.; Elguero, J. Theor. Chem. Acc.2014, 133, 1464. doi: 10.1007/s00214-014-1464-y
-
[22]
(22) Alkorta, I.; Sanchez-Sanz, G.; Elguero, J.; Del Bene, J. E.J. Phys. Chem. A 2014, 118, 1527. doi: 10.1021/jp411623h
-
[23]
(23) An, X. L.; Li, R.; Li, Q. Z.; Liu, X. F.; Li, W. Z.; Cheng, J. B.J. Mol. Model. 2012, 18, 4325. doi: 10.1007/s00894-012-1445-9
-
[24]
(24) Li, Q. Z.; Li, R.; Liu, X. F.; Li, W. Z.; Cheng, J. B.ChemPhysChem 2012, 13, 1205. doi: 10.1002/cphc.v13.5
-
[25]
(25) Li, Q. Z.; Zhuo, H.; Yang, X.; Cheng, J. B.; Li, W. Z.; Loffredo, R. E. ChemPhysChem 2014, 15, 500. doi: 10.1002/cphc.v15.3
-
[26]
(26) Del Bene, J. E.; Alkorta, I.; Elguero, J. J. Phys. Chem. A 2014, 118, 3386. doi: 10.1021/jp502667k
-
[27]
(27) Del Bene, J. E.; Alkorta, I.; Elguero, J. J. Phys. Chem. A 2015, 119, 3125. doi: 10.1021/acs.jpca.5b00944
-
[28]
(28) Li, Q. Z.; Li, R.; Liu, X. F.; Li, W. Z.; Cheng, J. B. J. Phys. Chem. A 2012, 116, 2547. doi: 10.1021/jp211435b
-
[29]
(29) Alkorta, I.; Elguero, J.; Solimannejad, M. J. Phys. Chem. A2014, 118, 947. doi: 10.1021/jp412144r
-
[30]
(30) Clark, T.; Hennemann, M.; Murray, J. S.; Politzer, P. J. Mol. Model. 2007, 13, 291. doi: 10.1007/s00894-006-0130-2
-
[31]
(31) Murray, J. S.; Riley, K. E.; Politzer, P.; Clark, T. Aust. J. Chem.2010, 63, 1598. doi: 10.1071/CH10259
-
[32]
(32) Politzer, P.; Murray, J. S.; Clark, T. Phys. Chem. Chem. Phys.2013, 15, 11178. doi: 10.1039/c3cp00054k
-
[33]
(33) Murray, J. S.; Lane, P.; Clark, T.; Riley, K. E.; Politzer, P.J. Mol. Model. 2012, 18, 541. doi: 10.1007/s00894-011-1089-1
-
[34]
(34) Esrafili, M. D.; Mohammadian-Sabet, F.; Solimannejad, M.Struct. Chem. 2014, 25, 1197. doi: 10.1007/s11224-014-0392-8
-
[35]
(35) Solimannejad, M.; Ramezani, V.; Trujillo, C.; Alkorta, I.; Sanchez-Sanz, G.; Elguero, J. J. Phys. Chem. A 2012, 116, 5199. doi: 10.1021/jp300540z
-
[36]
(36) Bauza, A.; Ramis, R.; Frontera, A. J. Phys. Chem. A 2014, 118, 2827. doi: 10.1021/jp502301n
-
[37]
(37) Lang, T.; Li, X.; Meng, L.; Zheng, S.; Zeng, Y. Struct. Chem.2014, 26, 213. doi: 10.1007/s11224-014-0486-3
-
[38]
(38) Bauza, A.; Mooibroek T. J.; Frontera, A. ChemPhysChem2015, 16, 2496. doi: 10.1002/cphc.v16.12
-
[39]
(39) Brupbacher-Gatehouse, B. J. Am. Chem. Soc. 2000, 122, 4171. doi: 10.1021/ja9938534
-
[40]
(40) Alkorta, I.; Elguero, J.; Del Bene, J. E. J. Phys. Chem. A 2013, 117, 10497. doi: 10.1021/jp407097e
-
[41]
(41) Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. doi: 10.1080/00268977000101561
-
[42]
(42) Frisch, M.; Trucks, G.; Schlegel, H. B.; et al. Gaussian 09, Revision A. 02; Gaussian: Wallingford, CT, 2009.
-
[43]
(43) Bader, R. F.W. Chem. Rev. 1991, 91, 893. doi: 10.1021/cr00005a013
-
[44]
(44) Matta, C. F.; Boyd, R. J. The Quantum Theory of Atoms in Molecules; JohnWiley & Sons: New York, 2007.
-
[45]
(45) Bone, R. G. A.; Bader, R. F.W. J. Phys. Chem. 1996, 100, 10892. doi: 10.1021/jp953512m
-
[46]
(46) Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397. doi: 10.1063/1.458517
-
[47]
(47) Silvi, B.; Savin, A. Nature 1994, 371, 683. doi: 10.1038/371683a0
-
[48]
(48) Savin, A.; Nesper, R.; Wengert, S.; Fässler, T. F. Angew. Chem. Int. Edit. 1997, 36, 1808.
-
[49]
(49) Li, X. Y.; Huo, S. H.; Zeng, Y. L.; Sun, Z.; Zheng, S. J.; Meng, L. P. Organometallics 2013, 32, 1060. doi: 10.1021/om301110j
-
[50]
(50) Bulat, F. A.; Toro-Labbé, A.; Brinck, T.; Murray, J. S.; Politzer, P. J. Mol. Model. 2010, 16, 1679. doi: 10.1007/s00894-010-0692-x
-
[51]
(51) Biegler-Kôning, F. J.; Derdau, R.; Bayles, D.; Bader, R. F.W.AIM2000, Version 2.0, 2002.
-
[52]
(52) Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.v33.5
-
[53]
(53) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14, 33. doi: 10.1016/0263-7855(96)00018-5
-
[54]
(54) Politzer, P.; Laurence, P. R.; Jayasuriya, K. Environ Health Perspect. 1985, 61, 191. doi: 10.1289/ehp.8561191
-
[55]
(55) Politzer, P.; Murray, J. S. Theor. Chem. Acc. 2002, 108, 134. doi: 10.1007/s00214-002-0363-9
-
[56]
(56) Koch, U.; Popelier, P. L. A. J. Phys. Chem. 1995, 99, 9747. doi: 10.1021/j100024a016
-
[57]
(57) Delanoye, S. N.; Herrebout, W. A.; van der Veken, B. J. J. Am. Chem. Soc. 2002, 124, 11854. doi: 10.1021/ja027610e
-
[58]
(58) Johnson, E. R.; Keinan, S.; Mori-Sanchez, P.; Contreras-Garcia, J.; Cohen, A. J.; Yang, W. J. Am. Chem. Soc. 2010, 132, 6498. doi: 10.1021/ja100936w
-
[59]
(59) Contreras-Garcia, J.; Johnson, E. R.; Keinan, S.; Chaudret, R.; Piquemal, J. P.; Beratan, D. N.; Yang, W. J. Chem. Theory Comput. 2011, 7, 625. doi: 10.1021/ct100641a
-
[60]
(60) Zubarev, D. Y.; Boldyrev, A. I. Phys. Chem. Chem. Phys. 2008, 10, 5207. doi: 10.1039/b804083d
-
[61]
(61) Cheng, H.; Cheng, L. J. Comput. Theor. Chem. 2015, 1060, 36. doi: 10.1016/j.comptc.2015.02.020
-
[62]
(62) Feng, Y. Q.; Cheng, L. J. RSC Adv. 2015, 5, 62543. doi: 10.1039/C5RA06137G
-
[1]
-
-
[1]
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
-
[2]
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
-
[3]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[4]
Zhenli Sun , Ning Wang , Kexin Lin , Qin Dai , Yufei Zhou , Dandan Cao , Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095
-
[5]
Zhening Lou , Quanxing Mao , Xiaogeng Feng , Lei Zhang , Xu Xu , Yuyang Zhang , Xueyan Liu , Hongling Kang , Dongyang Feng , Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089
-
[6]
Yan Zhang , Ping Wang , Tiebo Xiao , Futing Zi , Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017
-
[7]
Xiaofei Zhou , Yu-Qing Cao , Feng Zhu , Li Qi , Linhai Liu , Ni Yan , Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058
-
[8]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[9]
Shuang Meng , Haixin Long , Zhou Zhou , Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008
-
[10]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[11]
Lijun Dong , Pengcheng Du , Guangnong Lu , Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041
-
[12]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[13]
Wei Shao , Wanqun Zhang , Pingping Zhu , Wanqun Hu , Qiang Zhou , Weiwei Li , Kaiping Yang , Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048
-
[14]
Liuchuang Zhao , Wenbo Chen , Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079
-
[15]
Guangming Yang , Yunhui Long . Design and Implementation of Analytical Chemistry Curriculum Based on the Learning Community of Teachers and Students. University Chemistry, 2024, 39(3): 132-137. doi: 10.3866/PKU.DXHX202309089
-
[16]
Yifan Xie , Liyun Yao , Ruolin Yang , Yuxing Cai , Yujie Jin , Ning Li . Application of Comparative Pedagogy in Instrumental Analysis Experiment Teaching. University Chemistry, 2024, 39(3): 266-273. doi: 10.3866/PKU.DXHX202309068
-
[17]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[18]
Qiang Xu , Rong Zhang , Liyan Zhang , Jinxuan Liu , Shuo Wu , Rongwen Lv . Exploration and Practice of Ideological and Political Education Construction in the Course of Practical Instrument Analysis Theory. University Chemistry, 2024, 39(6): 132-136. doi: 10.3866/PKU.DXHX202311018
-
[19]
Tian Li , Liping Zhang , Ling Liu , Ruifang Li , Longfei Mao , Hui Yang . Reform and Practice of Analytical Chemistry Teaching under the Guidance of Course Ideology and Politics. University Chemistry, 2024, 39(6): 189-194. doi: 10.3866/PKU.DXHX202310014
-
[20]
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(304)
- HTML views(10)