Citation: WANG Yue-Hong, LI Xiao-Yan, ZENG Yan-Li, MENG Ling-Peng, ZHANG Xue-Ying. Topological Analyses of Electron Density on π-hole Pnicogen Bonds in PO2X…PX3/PH2X (X = F, Cl, Br, CH3, NH2) Complexes[J]. Acta Physico-Chimica Sinica, ;2016, 32(3): 671-682. doi: 10.3866/PKU.WHXB201512293 shu

Topological Analyses of Electron Density on π-hole Pnicogen Bonds in PO2X…PX3/PH2X (X = F, Cl, Br, CH3, NH2) Complexes

  • Corresponding author: ZHANG Xue-Ying, 
  • Received Date: 30 September 2015
    Available Online: 23 December 2015

    Fund Project: 国家自然科学基金(21371045,21372062) (21371045,21372062)河北省自然科学基金(B2014205109) (B2014205109)河北省教育厅重点项目(ZD20131037,ZD20131053)资助 (ZD20131037,ZD20131053)

  • Acting as a molecular linker, the pnicogen bond plays an important role in crystal engineering and supramolecular synthesis. The structures and properties of π-hole pnicogen-bonded complexes PO2X…PX3 and PO2X…PH2X (X = F, Cl, Br, CH3, NH2) were investigated by ab initio MP2/aug-cc-pVTZ calculations and topological analyses of electron density. Two sets of π-hole pnicogen-bonded complexes were found on the potential surfaces. Type-A complexes have P…P and type-B ones have P…X pnicogen bonds. The atoms-inmolecules (AIM) theory, electron localization function (ELF) theory, noncovalent interaction (NCI) index method as well as the adaptive natural density partitioning (AdNDP) approach were used to expand the nature of the interactions considered. The substituent groups strongly affect the properties of pnicogen bond interactions. Pnicogen bonds were covalent interactions for the electron-donating substituents (CH3, NH2), while they were noncovalent, partly covalent and covalent interactions when the substituents were electron-withdrawing groups. Natural bond orbital (NBO) analyses indicated that the larger the Wiberg bond order of the pnicogen-bonded interaction, the more covalent the bond and the greater its strength will be. In type-B conformations, charge transfer mainly occurs from an X lone pair of the PX3/PH2X molecule to the π*(P=O) orbital of PO2X.
  • 加载中
    1. [1]

      (1) Politzer, P.; Murray, J. S. ChemPhysChem 2013, 14, 278. doi: 10.1002/cphc.201200799

    2. [2]

      (2) Metrangolo, P.; Meyer, F.; Pilati, T.; Resnati, G.; Terraneo, G.Angew Chem. Int. Edit. Engl. 2008, 47, 6114. doi: 10.1002/anie.v47: 33

    3. [3]

      (3) Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati, G. Accounts Chem. Res. 2005, 38, 386. doi: 10.1021/ar0400995

    4. [4]

      (4) Legon, A. C. Phys. Chem. Chem. Phys. 2010, 12, 7736. doi: 10.1039/c002129f

    5. [5]

      (5) Scheiner, S. Accounts Chem. Res. 2013, 46, 280. doi: 10.1021/ar3001316

    6. [6]

      (6) Zahn, S.; Frank, R.; Hey-Hawkins, E.; Kirchner, B. Chemistry2011, 17, 6034. doi: 10.1002/chem.v17.22

    7. [7]

      (7) Carré, F.; Chuit, C.; Corriu, R. J. P.; Monforte, P.; Nayyar, N.K.; Reyé, C. J. Organomet. Chem. 1995, 499, 147. doi: 10.1016/0022-328X(95)00318-K

    8. [8]

      (8) Scheiner, S. Phys. Chem. Chem. Phys. 2011, 13, 13860. doi: 10.1039/c1cp20427k

    9. [9]

      (9) Solimannejad, M.; Gharabaghi, M.; Scheiner, S. J. Chem. Phys. 2011, 134, 024312. doi: 10.1063/1.3523580

    10. [10]

      (10) Scheiner, S. J. Chem. Phys. 2011, 134, 094315. doi: 10.1063/1.3562209

    11. [11]

      (11) Adhikari, U.; Scheiner, S. Chem. Phys. Lett. 2012, 536, 30. doi: 10.1016/j.cplett.2012.03.085

    12. [12]

      (12) Adhikari, U.; Scheiner, S. J. Phys. Chem. A 2012, 116, 3487. doi: 10.1021/jp301288e

    13. [13]

      (13) Scheiner, S.; Adhikari, U. J. Phys. Chem. A 2011, 115, 11101. doi: 10.1021/jp2082787

    14. [14]

      (14) Scheiner, S. Int. J. Quantum Chem. 2013, 113, 1609. doi: 10.1002/qua.v113.11

    15. [15]

      (15) Del Bene, J. E.; Alkorta, I.; Sanchez-Sanz, G.; Elguero, J.Chem. Phys. Lett. 2011, 512, 184. doi: 10.1016/j.cplett.2011.07.043

    16. [16]

      (16) Del Bene, J. E.; Alkorta, I.; Sanchez-Sanz, G.; Elguero, J.J. Phys. Chem. A 2011, 115, 13724. doi: 10.1021/jp2094164

    17. [17]

      (17) Del Bene, J. E.; Alkorta, I.; Sanchez-Sanz, G.; Elguero, J.J. Phys. Chem. A 2012, 116, 3056. doi: 10.1021/jp300763d

    18. [18]

      (18) Alkorta, I.; Elguero, J.; Del Bene, J. E. J. Phys. Chem. A 2013, 117, 4981. doi: 10.1021/jp403651h

    19. [19]

      (19) Del Bene, J. E.; Alkorta, I.; Elguero, J. J. Phys. Chem. A 2013, 117, 11592. doi: 10.1021/jp409016q

    20. [20]

      (20) Del Bene, J. E.; Alkorta, I.; Elguero, J. J. Phys. Chem. A 2013, 117, 6893. doi: 10.1021/jp4063109

    21. [21]

      (21) Del Bene, J. E.; Alkorta, I.; Elguero, J. Theor. Chem. Acc.2014, 133, 1464. doi: 10.1007/s00214-014-1464-y

    22. [22]

      (22) Alkorta, I.; Sanchez-Sanz, G.; Elguero, J.; Del Bene, J. E.J. Phys. Chem. A 2014, 118, 1527. doi: 10.1021/jp411623h

    23. [23]

      (23) An, X. L.; Li, R.; Li, Q. Z.; Liu, X. F.; Li, W. Z.; Cheng, J. B.J. Mol. Model. 2012, 18, 4325. doi: 10.1007/s00894-012-1445-9

    24. [24]

      (24) Li, Q. Z.; Li, R.; Liu, X. F.; Li, W. Z.; Cheng, J. B.ChemPhysChem 2012, 13, 1205. doi: 10.1002/cphc.v13.5

    25. [25]

      (25) Li, Q. Z.; Zhuo, H.; Yang, X.; Cheng, J. B.; Li, W. Z.; Loffredo, R. E. ChemPhysChem 2014, 15, 500. doi: 10.1002/cphc.v15.3

    26. [26]

      (26) Del Bene, J. E.; Alkorta, I.; Elguero, J. J. Phys. Chem. A 2014, 118, 3386. doi: 10.1021/jp502667k

    27. [27]

      (27) Del Bene, J. E.; Alkorta, I.; Elguero, J. J. Phys. Chem. A 2015, 119, 3125. doi: 10.1021/acs.jpca.5b00944

    28. [28]

      (28) Li, Q. Z.; Li, R.; Liu, X. F.; Li, W. Z.; Cheng, J. B. J. Phys. Chem. A 2012, 116, 2547. doi: 10.1021/jp211435b

    29. [29]

      (29) Alkorta, I.; Elguero, J.; Solimannejad, M. J. Phys. Chem. A2014, 118, 947. doi: 10.1021/jp412144r

    30. [30]

      (30) Clark, T.; Hennemann, M.; Murray, J. S.; Politzer, P. J. Mol. Model. 2007, 13, 291. doi: 10.1007/s00894-006-0130-2

    31. [31]

      (31) Murray, J. S.; Riley, K. E.; Politzer, P.; Clark, T. Aust. J. Chem.2010, 63, 1598. doi: 10.1071/CH10259

    32. [32]

      (32) Politzer, P.; Murray, J. S.; Clark, T. Phys. Chem. Chem. Phys.2013, 15, 11178. doi: 10.1039/c3cp00054k

    33. [33]

      (33) Murray, J. S.; Lane, P.; Clark, T.; Riley, K. E.; Politzer, P.J. Mol. Model. 2012, 18, 541. doi: 10.1007/s00894-011-1089-1

    34. [34]

      (34) Esrafili, M. D.; Mohammadian-Sabet, F.; Solimannejad, M.Struct. Chem. 2014, 25, 1197. doi: 10.1007/s11224-014-0392-8

    35. [35]

      (35) Solimannejad, M.; Ramezani, V.; Trujillo, C.; Alkorta, I.; Sanchez-Sanz, G.; Elguero, J. J. Phys. Chem. A 2012, 116, 5199. doi: 10.1021/jp300540z

    36. [36]

      (36) Bauza, A.; Ramis, R.; Frontera, A. J. Phys. Chem. A 2014, 118, 2827. doi: 10.1021/jp502301n

    37. [37]

      (37) Lang, T.; Li, X.; Meng, L.; Zheng, S.; Zeng, Y. Struct. Chem.2014, 26, 213. doi: 10.1007/s11224-014-0486-3

    38. [38]

      (38) Bauza, A.; Mooibroek T. J.; Frontera, A. ChemPhysChem2015, 16, 2496. doi: 10.1002/cphc.v16.12

    39. [39]

      (39) Brupbacher-Gatehouse, B. J. Am. Chem. Soc. 2000, 122, 4171. doi: 10.1021/ja9938534

    40. [40]

      (40) Alkorta, I.; Elguero, J.; Del Bene, J. E. J. Phys. Chem. A 2013, 117, 10497. doi: 10.1021/jp407097e

    41. [41]

      (41) Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. doi: 10.1080/00268977000101561

    42. [42]

      (42) Frisch, M.; Trucks, G.; Schlegel, H. B.; et al. Gaussian 09, Revision A. 02; Gaussian: Wallingford, CT, 2009.

    43. [43]

      (43) Bader, R. F.W. Chem. Rev. 1991, 91, 893. doi: 10.1021/cr00005a013

    44. [44]

      (44) Matta, C. F.; Boyd, R. J. The Quantum Theory of Atoms in Molecules; JohnWiley & Sons: New York, 2007.

    45. [45]

      (45) Bone, R. G. A.; Bader, R. F.W. J. Phys. Chem. 1996, 100, 10892. doi: 10.1021/jp953512m

    46. [46]

      (46) Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397. doi: 10.1063/1.458517

    47. [47]

      (47) Silvi, B.; Savin, A. Nature 1994, 371, 683. doi: 10.1038/371683a0

    48. [48]

      (48) Savin, A.; Nesper, R.; Wengert, S.; Fässler, T. F. Angew. Chem. Int. Edit. 1997, 36, 1808.

    49. [49]

      (49) Li, X. Y.; Huo, S. H.; Zeng, Y. L.; Sun, Z.; Zheng, S. J.; Meng, L. P. Organometallics 2013, 32, 1060. doi: 10.1021/om301110j

    50. [50]

      (50) Bulat, F. A.; Toro-Labbé, A.; Brinck, T.; Murray, J. S.; Politzer, P. J. Mol. Model. 2010, 16, 1679. doi: 10.1007/s00894-010-0692-x

    51. [51]

      (51) Biegler-Kôning, F. J.; Derdau, R.; Bayles, D.; Bader, R. F.W.AIM2000, Version 2.0, 2002.

    52. [52]

      (52) Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.v33.5

    53. [53]

      (53) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14, 33. doi: 10.1016/0263-7855(96)00018-5

    54. [54]

      (54) Politzer, P.; Laurence, P. R.; Jayasuriya, K. Environ Health Perspect. 1985, 61, 191. doi: 10.1289/ehp.8561191

    55. [55]

      (55) Politzer, P.; Murray, J. S. Theor. Chem. Acc. 2002, 108, 134. doi: 10.1007/s00214-002-0363-9

    56. [56]

      (56) Koch, U.; Popelier, P. L. A. J. Phys. Chem. 1995, 99, 9747. doi: 10.1021/j100024a016

    57. [57]

      (57) Delanoye, S. N.; Herrebout, W. A.; van der Veken, B. J. J. Am. Chem. Soc. 2002, 124, 11854. doi: 10.1021/ja027610e

    58. [58]

      (58) Johnson, E. R.; Keinan, S.; Mori-Sanchez, P.; Contreras-Garcia, J.; Cohen, A. J.; Yang, W. J. Am. Chem. Soc. 2010, 132, 6498. doi: 10.1021/ja100936w

    59. [59]

      (59) Contreras-Garcia, J.; Johnson, E. R.; Keinan, S.; Chaudret, R.; Piquemal, J. P.; Beratan, D. N.; Yang, W. J. Chem. Theory Comput. 2011, 7, 625. doi: 10.1021/ct100641a

    60. [60]

      (60) Zubarev, D. Y.; Boldyrev, A. I. Phys. Chem. Chem. Phys. 2008, 10, 5207. doi: 10.1039/b804083d

    61. [61]

      (61) Cheng, H.; Cheng, L. J. Comput. Theor. Chem. 2015, 1060, 36. doi: 10.1016/j.comptc.2015.02.020

    62. [62]

      (62) Feng, Y. Q.; Cheng, L. J. RSC Adv. 2015, 5, 62543. doi: 10.1039/C5RA06137G

  • 加载中
    1. [1]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    2. [2]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    3. [3]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    4. [4]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    5. [5]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    6. [6]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    7. [7]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    8. [8]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    9. [9]

      Zhaoyang Li Haiyan Zhao Yali Zhang Yuan Zhang Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131

    10. [10]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    11. [11]

      Yan Zhang Ping Wang Tiebo Xiao Futing Zi Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017

    12. [12]

      Xiaofei Zhou Yu-Qing Cao Feng Zhu Li Qi Linhai Liu Ni Yan Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058

    13. [13]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    14. [14]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    15. [15]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    16. [16]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    17. [17]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    18. [18]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    19. [19]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

    20. [20]

      Guangming Yang Yunhui Long . Design and Implementation of Analytical Chemistry Curriculum Based on the Learning Community of Teachers and Students. University Chemistry, 2024, 39(3): 132-137. doi: 10.3866/PKU.DXHX202309089

Metrics
  • PDF Downloads(0)
  • Abstract views(364)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return