Citation:
WANG Quan-De. Skeletal Mechanism Generation for Methyl Butanoate Combustion via Directed Relation Graph Based Methods[J]. Acta Physico-Chimica Sinica,
;2016, 32(3): 595-604.
doi:
10.3866/PKU.WHXB201512211
-
Directed relation graph (DRG) based skeletal reduction methods have become the mainstream approach for skeletal mechanism generation because of their simple concept and low computational cost. Within the DRG framework, the definitions of the interaction coefficients and the connection weights in different DRG methods control the resulting skeletal mechanisms. In this work, based on DRG methods, four contemporary definitions of the interaction coefficients in conjunction with both standard DRG and error propagation (EP) graph search methods are used to derive skeletal mechanisms for methyl butanoate (MB) combustion. Detailed comparisons of contemporary DRG based methods are performed by systematic error analysis. To further evaluate the performance of the different DRG-based methods, reaction paths are investigated via element flux analysis to check the chemical kinetics of the resulting skeletal mechanisms. Furthermore, a 96-species skeletal mechanism for MB combustion is proposed. Reaction path analysis highlights the importance of propene chemistry during MB oxidation. This work reveals the applicability of reaction path analysis in skeletal reduction using different DRG-based methods, and also provides critical information for further development of skeletal reduction methods.
-
-
-
[1]
(1) Simmie, J. M. Prog. Energy Combust. Sci. 2003, 29, 599. doi: 10.1016/S0360-1285(03)00060-1
-
[2]
(2) Wang, Q. D. RSC Adv. 2014, 4, 4564. doi: 10.1039/c3ra45959d
-
[3]
(3) Guo, J. J.; Hua, X. X.; Wang, F.; Tan, N. X.; Li, X. Y. Acta Phys. -Chim. Sin. 2014, 30, 1027. [郭俊江, 华晓筱, 王繁, 谈宁馨, 李象远. 物理化学学报, 2014, 30, 1027.] doi: 10.3866/PKU.WHXB201404031
-
[4]
(4) Westbrook, C. K.; Pitz, W. J.; Herbinet, O.; Curran, H. J.; Silke, E. J. Combust. Flame 2009, 156, 181. doi: 10.1016/j.combustflame.2008.07.014
-
[5]
(5) Battin-Leclerc, F.; Blurock, E.; Bounaceur, R.; Fournet, R.; Glaude, P. A.; Herbinet, O.; Sirjeana, B.; Wartha, V. Chem. Soc. Rev. 2011, 40, 4762. doi: 10.1039/C0CS00207K
-
[6]
(6) Battin-Leclerc, F. Prog. Energy Combust. Sci. 2008, 34, 440. doi: 10.1016/j.pecs.2007.10.002
-
[7]
(7) Xu, J. Q.; Guo, J. J.; Liu, A. K.; Wang, J. L.; Tan, N. X.; Li, X.Y. Acta Phys. -Chim. Sin. 2015, 31, 643. [徐佳琪, 郭俊江, 刘爱科, 王健礼, 谈宁馨, 李象远. 物理化学学报, 2015, 31, 643.] doi: 10.3866/PKU.WHXB201503022
-
[8]
(8) Lu, T. F.; Law, C. K. Prog. Energy Combust. Sci. 2009, 35, 192. doi: 10.1016/j.pecs.2008.10.002
-
[9]
(9) Fang, Y. M.; Wang, Q. D.; Wang, F.; Li, X. Y. Acta Phys. -Chim. Sin. 2012, 28, 2536. [方亚梅, 王全德, 王繁, 李象远. 物理化学学报, 2012, 28, 2536.] doi: 10.3866/PKU.WHXB201208201
-
[10]
(10) Valorani, M.; Creta, F.; Goussis, D. A.; Lee, J. C.; Najm, H. N.Combust. Flame 2006, 146, 29. doi: 10.1016/j.combustflame.2006.03.011
-
[11]
(11) Valorani, M.; Creta, F.; Donato, F.; Najm, H. N.; Goussis, D. A.Proc. Combust. Inst. 2007, 31, 483. doi: 10.1016/j.proci.2006.07.027
-
[12]
(12) Prager, J.; Najm, H. N.; Valorani, M.; Goussis, D. A. Proc. Combust. Inst. 2009, 32, 509. doi: 10.1016/j.proci.2008.06.074
-
[13]
(13) Løvås, T. Combust. Flame 2009, 156, 1348. doi: 10.1016/j.combustflame.2009.03.009
-
[14]
(14) Nagy, T.; Turányi, T. Combust. Flame 2009, 156, 417. doi: 10.1016/j.combustflame.2008.11.001
-
[15]
(15) Zsély, I. G.; Nagy, T.; Simmie, J. M.; Curran, H. J. Combust. Flame 2011, 158, 1469. doi: 10.1016/j.combustflame.2010.12.011
-
[16]
(16) Bendtsen, A. B.; Glarborg, P.; Dam-Johansen, K. Computers & Chemistry 2001, 25, 161. doi: 10.1016/S0097-8485(00)00077-2
-
[17]
(17) Lu, T. F.; Law, C. K. Proc. Combust. Inst. 2005, 30, 1333. doi: 10.1016/j.proci.2004.08.145
-
[18]
(18) Lu, T. F.; Law, C. K. Combust. Flame 2006, 144, 24. doi: 10.1016/j.combustflame.2005.02.015
-
[19]
(19) Pepiot-Desjardins, P.; Pitsch, H. Combust. Flame 2008, 154, 67. doi: 10.1016/j.combustflame.2007.10.020
-
[20]
(20) Luo, Z. Y.; Lu, T. F.; Maciaszek, M. J.; Som, S.; Longman, D.E. Energy Fuels 2010, 24, 6283. doi: 10.1021/ef1012227
-
[21]
(21) Sun, W.; Chen, Z.; Gou, X.; Ju, Y. Combust. Flame 2010, 157, 1298. doi: 10.1016/j.combustflame.2010.03.006
-
[22]
(22) Jiang, Y.; Qiu, R. Acta Phys. -Chim. Sin. 2009, 25, 1019. [蒋勇, 邱榕. 物理化学学报, 2009, 25, 1019.] doi: 10.3866/PKU.WHXB20090426
-
[23]
(23) Tosatto, L.; Bennett, B. A. V.; Smooke, M. D. Combust. Flame2013, 160, 1572. doi: 10.1016/j.combustflame.2013.03.024
-
[24]
(24) Wang, Q. D. Energy Fuels 2013, 27, 4021. doi: 10.1021/ef4007774
-
[25]
(25) Wang, Q. D.; Fang, Y. M.; Wang, F.; Li, X. Y. Proc. Combust. Inst. 2013, 34, 187. doi: 10.1016/j.proci.2012.06.011
-
[26]
(26) Fisher, E. M.; Pitz, W. J.; Curran, H. J.; Westbrook, C. K. Proc. Combust. Inst. 2000, 28, 1579. doi: 10.1016/S0082-0784(00)80555-X
-
[27]
(27) Coniglio, L.; Bennadji, H.; Glaude, P. A.; Herbinet, O.; Billaud, F. Prog. Energy Combust. Sci. 2013, 39, 340. doi: 10.1016/j.pecs.2013.03.002
-
[28]
(28) Chemkin, v. 15131; Reaction Design: San Diego.
-
[29]
(29) Dooley, S.; Curran, H. J.; Simmie, J. M. Combust. Flame 2008, 153, 2. doi: 10.1016/j.combustflame.2008.01.005
-
[30]
(30) Wang, Q. D.; Fang, Y. M.; Wang, F.; Li, X. Y. Combust. Flame2012, 159, 91. doi: 10.1016/j.combustflame.2011.05.019
-
[1]
-
-
-
[1]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[2]
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
-
[3]
Ruitong Zhang , Zhiqiang Zeng , Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004
-
[4]
Shuying Zhu , Shuting Wu , Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117
-
[5]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[6]
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
-
[7]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[8]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[9]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[10]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[11]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[12]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[13]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[14]
Houzhen Xiao , Mingyu Wang , Yong Liu , Bangsheng Lao , Lingbin Lu , Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011
-
[15]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[16]
Xueli Mu , Lingli Han , Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057
-
[17]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[18]
Chen LU , Qinlong HONG , Haixia ZHANG , Jian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407
-
[19]
Xiaofang DONG , Yue YANG , Shen WANG , Xiaofang HAO , Yuxia WANG , Peng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388
-
[20]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(508)
- HTML views(39)