Citation:
LIU Qing-Bin, YU Cui, HE Ze-Zhao, WANG Jing-Jing, LI Jia, LU Wei-Li, FENG Zhi-Hong. Epitaxial Graphene on Sapphire Substrate by Chemical Vapor Deposition[J]. Acta Physico-Chimica Sinica,
;2016, 32(3): 787-792.
doi:
10.3866/PKU.WHXB201512183
-
Epitaxial graphene by chemical vapor deposition (CVD) is one of the main methods to fabricate high-quality wafer-scale graphene materials. However, CVD-grown graphene on metal substrates has some disadvantages, such as the need for a transfer process and carbon atoms dissolved into the metal substrate. In this work, we evaluate sapphire substrates to overcome those disadvantages. The morphology and crystal quality of the samples grown at different temperatures were characterized by atomic force microscopy (AFM), optical microscopy (OM), Raman spectroscopy, and a Hall measurement system. To ease the etching process of carbon atoms to the substrate, we adopt a very low carbon concentration of 0.01%. AFM and Raman results show that the surface morphologies of samples grown at lower temperatures were smoother, whereas the quality of samples grown at higher temperatures was better. The sapphire substrate was etched in an H2 environment, while it was not etched only by carbon source without H2 environment. Epitaxial graphene with flat surface morphology and good crystal quality was prepared on a c-plane sapphire substrate (diameter: 50 mm) at a growth temperature of 1200 ℃. The carrier mobility is above 1000 cm2·V-1·s-1 at room temperature.
-
-
-
[1]
(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A.Science 2004, 306 (5696), 666. doi: 10.1126/science.1102896
-
[2]
(2) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849
-
[3]
(3) Li, X. S.; Cai, W.W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Science 2009, 324 (5932), 1312. doi: 10.1126/science.1171245
-
[4]
(4) Bae, S.; Kim, H.; Lee, Y. B.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y., II.; Kim, Y. J.; Kim, K. S.; Özyilmaz, B.; Ahn, J. H.; Hong, B. H.; Iijima, S.Nat. Nanotechnol. 2010, 5, 574. doi: 10.1038/nnano.2010.132
-
[5]
(5) Li, X. S.; Cai, W.W.; Colombo, L.; Ruoff, R. S. Nano Lett.2009, 9 (12), 4268. doi: 10.1021/nl902515k
-
[6]
(6) Bi, H.; Huang, F. Q.; Zhao, W.; Lü, X. J.; Chen, J.; Lin, T. Q.; Wan, D. Y.; Xie, X. M.; Jiang, M. H. Carbon 2012, 50 (8), 2703. doi: 10.1016/j.carbon.2012.02.027
-
[7]
(7) Hwang, J.; Shields, V. B.; Thomas, C. I.; Shivaraman, S.; Hao, D.; Kim, M.; Woll, A. R.; Kim, M.; Spencer, M. G. J. Cryst. Grow. 2010, 312 (21), 3219. doi: 10.1016/j.jcrysgro.2010.07.046
-
[8]
(8) Maeda, F.; Hibino, H. Jpn. J. Appl. Phys. 2010, 49 (4), 04DH13. doi: 10.1143/JJAP.49.04DH13
-
[9]
(9) Fanton, M. A.; Robinson, J. A.; Puls, C.; Liu, Y.; Hollander, M.J.; Weiland, B. E.; LaBella, M.; Trumbull, K.; Kasarda, R.; Howsare, C.; Stitt, J.; Snyder, D.W. ACS Nano 2011, 5 (10), 8062. doi: 10.1021/nn202643t
-
[10]
(10) Hwang, J.; Kim, M.; Campbell, D.; Alsalman, H. A.; Kwak, J.Y.; Shivaraman, S.; Woll, A. R.; Singh, A. K.; Hennig, R. G.; Gorantla, S.; Rümmeli, M. H.; Spencer, M. G. ACS Nano2013, 7 (1), 385. doi: 10.1021/nn305486x
-
[11]
(11) Robinson, J. A.; Wetherington, M.; Tedesco, J. L.; Campbell, P.M.; Weng, X.; Stitt, J.; Fanton, M. A.; Frantz, E.; Snyder, D.; VanMil, B. L.; Jernigan, G. G.; Myers-Ward, R. L.; Eddy, C.R., Jr.; Gaskill, D. K. Nano Lett. 2009, 9 (8), 2873. doi: 10.1021/nl901073g
-
[12]
(12) Wang, G.; Zhang, M.; Zhu, Y.; Ding, G. Q.; Jing, D.; Guo, Q.L.; Liu, S.; Xie, X. M.; Chu, P. K.; Di, Z. F.; Wang, X. Sci. Rep. -UK 2013, 3: 2465. doi: 10.1038/srep02465
-
[13]
(13) Srivastava, N.; He, G.W.; Feenstra, R. M.; Fisher, P. J. Phys. Rev. B 2010, 82, 235406. doi: 10.1103/PhysRevB.82.235406
-
[14]
(14) Wang, Y. Y.; Ni, Z. H.; Shen, Z. X.; Wang, H. M.; Wu, Y. H.Appl. Phys. Lett. 2008, 92 (4), 043121. doi: 10.1063/1.2838745
-
[15]
(15) Canc, L. G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y. A.; Mizusaki, H.; Jorio, A.; Coelho, L. N.; Magalhaes-Paniago, R.; Pimenta, M. A. Appl. Phys. Lett. 2006, 88 (16), 163106. doi: 10.1063/1.2196057
-
[16]
(16) Wang, S.; Lara, F. D. S.; Wurstbauer, U.; Wang, L.; Pfeiffer, L.N.; Hone, J.; Garcia, J. M.; Pinczuk, A. Solid State Commun.2014, 189, 15. doi: org/10.1016/j.ssc.2014.03.008
-
[1]
-
-
-
[1]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[2]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[3]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[4]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[5]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[6]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[7]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[8]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
-
[9]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[10]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[11]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[12]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[13]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[14]
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
-
[15]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[16]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[17]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[18]
Mingxin LU , Liyang ZHOU , Xiaoyu XU , Xiaoying FENG , Hui WANG , Bin YAN , Jie XU , Chao CHEN , Hui MEI , Feng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206
-
[19]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[20]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(382)
- HTML views(16)