Citation: LI Qing, YANG Deng-Feng, WANG Jian-Hua, WU Qi, LIU Qing-Zhi. Biomimetic Modification and Desalination Behavior of (15,15) Carbon Nanotubes with a Diameter Larger than 2 nm[J]. Acta Physico-Chimica Sinica, ;2016, 32(3): 691-700. doi: 10.3866/PKU.WHXB201512182
-
Different charged functional groups including ―COO- and ―NH3+ were added to the interior and entrance of (15,15) armchair carbon nanotubes (CNTs) with a diameter larger than 2 nm to construct membranes that imitated the structure of the protein aquaporin-4. The potential of mean force, conductance, and density distributions of ions in the CNTs were calculated. The results showed that under 200 MPa, CNTs modified with oppositely charged groups in their interior and at their entrance could greatly improve salt desalination on the basis of high water flux. When five pairs of ―COO- and ―NH3+ functional groups were added to the interior of a CNT or four pairs of ―COO- and ―NH3+ functional groups were added to the interior of a CNT with another pair at the entrance, 100% Cl- rejection and 88% Na+ rejection were achieved. The lowest water conductivity of the functionalized CNTs was 4.6 times that of (8,8) unfunctionalized CNTs, and even slightly lower than that of unfunctionalized (15,15) CNTs.
-
-
[1]
(1) Oki, T.; Kanae, S. Science 2006, 313, 1068. doi: 10.1126/science.1128845
-
[2]
(2) Field, C. B.; Barros, V. R.; Mastrandrea, M. D.; Mach, K. J.; Abdrabo, M. A. K.; Adger, W. N.; Douglas, J. A; Jonathon, B.Contribution of Working Group II to the Third Assessment Report 2014, 56, 81.
-
[3]
(3) World, T.; Assessment, W.; Talafre, P. J.; Their, F. K. F.Piarnorgau 2009, 128, 343.
-
[4]
(4) Zhou, Y.; Yu, S. Z.; Gao, C. K. Journal of Chemical Industry and Engineering (China) 2006, 57, 1370. [周勇, 俞三传, 高从堦. 化工学报, 2006, 57, 1370.] doi: 10.3321/j.issn: 0438-1157.2006.06.019
-
[5]
(5) Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Nature 2001, 414, 188. doi: 10.1038/35102535
-
[6]
(6) Striolo, A. Nano Lett. 2006, 6, 633. doi: 10.1021/nl052254u
-
[7]
(7) Amrit, K.; Shekhar, G.; Gerhard, H. Proceedings of the National Academy of Sciences of the United States of America2003, 100, 10175. doi: 10.1073/pnas.1633354100
-
[8]
(8) Holt, J. K.; Park, H. K.; Wang, Y.; Stadermann, M.; Artyukhin, A. B.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. Science2006, 312, 1034. doi: 10.1126/science.1126298
-
[9]
(9) Majumder, M.; Chopra, N.; Andrews. R.; Hinds B. J. Nature2005, 438, 44. doi: 10.1038/438044a
-
[10]
(10) Corry, B. The Journal of Physical Chemistry B 2008, 112, 1427. doi: 10.1021/jp709845u
-
[11]
(11) Thomas, M.; Corry, B.; Hilder, T. A. Small 2014, 10, 1453. doi: 10.1002/smll.v10.8
-
[12]
(12) Chen, S.; Corry, B. Journal of Physical Chemistry B 2009, 113, 7642. doi: 10.1021/jp810102u
-
[13]
(13) Corry, B. Energy & Environmental Science 2011, 3, 751. doi: 10.1039/C0EE00481B
-
[14]
(14) Zheng, J.; Lennon, E. M; Tsao, H. K.; Sheng, Y. J.; Jiang, S.Journal of Chemical Physics 2005, 122, 279. doi: 10.1063/1.1908619
-
[15]
(15) Zhu, Y.; Wei. M.; Shao, Q.; Lu, L.; Lu, X.; Shen, W. Journal of Physical Chemistry C 2008, 113, 882. doi: 10.1021/jp8089006
-
[16]
(16) Gong, X. J.; Li, J. C.; Xu, K.; Wang, J. F.; Yang, H. Journal of the American Chemical Society 2010, 132, 1873. doi: 10.1021/ja905753p
-
[17]
(17) Kyotani, T.; Nakazaki, S.; Xu, W. H.; Tomita, A. Carbon 2001, 39, 782. doi: 10.1016/S0008-6223(01)00013-6
-
[18]
(18) Alsawat, M.; Altalhi, T.; Kumeria, T.; Santos, A.; Losic, D.Carbon 2015, 93, 681. doi: 10.1016/j.carbon.2015.05.090
-
[19]
(19) Altalhi, T.; Basiuk, E. V.; Rizo, J.; Basiuk, V. A.; Ginic-Markovic, M.; Clarke, S.; Clarke, S.; Losic, D. Chemeca 2012: Quality of Life Through Chemical Engineering 2012, 23, 1712.
-
[20]
(20) Yang, D. F.; Liu, Q. Z.; Li, H. M.; Gao, C. K. Chinese Journal of Appilied Chemistry 2014, 31 (11), 1345. [杨登峰, 刘清芝, 李红曼, 高从堦. 应用化学, 2014, 31 (11), 1345.] doi: 10.3724/SP.J.1095.2014.30622
-
[21]
(21) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. J. Comput. Chem. 2005, 26, 1781. doi: 10.1002/jcc.20289
-
[22]
(22) MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S. J. Phys. Chem. B 1998, 102, 3586. doi: 10.1021/jp973084f
-
[23]
(23) Zhu, F.; Tajkhorshid, E.; Schulten, K. Biophysical Journal2002, 83, 154. doi: 10.1016/S0006-3495(02)75157-6
-
[24]
(24) Zhu, F.; Tajkhorshid, E. Biophysical Journal 2004, 86, 50. doi: 10.1016/S0006-3495(04)74082-5
-
[25]
(25) Eric, D.; David, R. G.; Andrew, P. Journal of Chemical Physics2008, 128, 144120. doi: 10.1063/1.2829861
-
[26]
(26) Li, Q.; Yang, D. F.; Shi, J. S.; Xu, X.; Yan, S. H.; Liu, Q. Z.Desalination 2016, 379, 164.
-
[27]
(27) Allen, T.W.; Kuyucak, S.; Chung, S. H. Journal of Chemical Physics 1999, 111, 7985. doi: 10.1063/1.480132
-
[1]
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[3]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[4]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[5]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[6]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[7]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[8]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[9]
Xiao Liu , Guangzhong Cao , Mingli Gao , Hong Wu , Hongyan Feng , Chenxiao Jiang , Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043
-
[10]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[11]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[12]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[13]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[14]
Jinghua Wang , Yanxin Yu , Yanbiao Ren , Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057
-
[15]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[16]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[17]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[18]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[19]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[20]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(345)
- HTML views(16)