Citation:
YANG Li-Jiang, GAO Yi-Qin. Molecular Dynamic Simulations of the Effects of Trimethylamine- N-oxide/Urea Mixture on the Hydration of Single-Walled Carbon Nanotube Interiors[J]. Acta Physico-Chimica Sinica,
;2016, 32(1): 313-320.
doi:
10.3866/PKU.WHXB201512161
-
Urea is known for protein denaturation. The counteracting effect of trimethylamine-N-oxide (TMAO) against urea-induced protein denaturation is also well established. However, what is largely unknown is the mechanism TMAO counteracts urea. In this article, the hydration of the interior of a simple single-walled carbon nanotube in a urea/TMAO mixture is studied as a model system for hydrophobic hydration using molecular dynamic simulations. The results show that TMAO counteracts the hydration effect of urea to the nanotube interior through strong interactions among TMAO, water, and urea. The strong interactions of TMAO and water stabilize the water structure, which counteracts the effects of urea indirectly.
-
Keywords:
- Urea,
- Trimethylamine-N-oxide,
- Carbon nanotube,
- Hydration,
- Molecular dynamics
-
-
-
[1]
(1) Kresheck, G. C.; Scheraga, H. A. J. Phys. Chem. 1965, 69 (5), 1704. doi: 10.1021/j100889a043
-
[2]
(2) Camilloni, C.; Rocco, A. G.; Eberini, I.; Gianazza, E.; Broglia, R. A.; Tiana, G. Biophys. J. 2008, 94 (12), 4654. doi: 10.1529/biophysj.107.125799
-
[3]
(3) Moglich, A.; Krieger, F.; Kiefhaber, T. J. Mol. Biol. 2005, 345 (1), 153. doi: 10.1016/j.jmb.2004.10.036
-
[4]
(4) Das, A.; Mukhopadhyay, C. J. Phys. Chem. B 2008, 112 (26), 7903. doi: 10.1021/jp800370e
-
[5]
(5) Soper, A. K.; Finney, J. L. Phys. Rev. Lett. 1993, 71 (26), 4346. doi: 10.1103/PhysRevLett.71.4346
-
[6]
(6) Turner, J.; Soper, A. K.; Finney, J. L. Mol. Phys. 1990, 70 (4), 679. doi: 10.1080/00268979000102661
-
[7]
(7) Bolen, D. W.; Rose, G. D. Annu. Rev. Biochem. 2008, 77, 339. doi: 10.1146/annurev.biochem.77.061306.131357
-
[8]
(8) Stumpe, M. C.; Grubmuller, H. J. Am. Chem. Soc. 2007, 129 (51), 16126. doi: 10.1021/ja076216j
-
[9]
(9) Stumpe, M. C.; Grubmuller, H. J. Phys. Chem. B 2007, 111 (22), 6220. doi: 10.1021/jp066474n
-
[10]
(10) Canchi, D. R.; Garcia, A. E. Annual Review of Physical Chemistry 2013, 64, 273. doi: 10.1146/annurev-physchem-040412-110156
-
[11]
(11) Lin, T. Y.; Timasheff, S. N. Biochemistry 1994, 33 (42), 12695. doi: 10.1021/bi00208a021
-
[12]
(12) Auton, M.; Bolen, D. W. Proc. Natl. Acad. Sci. U. S. A. 2005, 102 (42), 15065. doi: 10.1073/pnas.0507053102
-
[13]
(13) Gluick, T. C.; Yadav, S. J. Am. Chem. Soc. 2003, 125 (15), 4418. doi: 10.1021/ja0292997
-
[14]
(14) Venkatesu, P.; Lin, H. M.; Lee, M. J. Thermochim. Acta 2009, 491 (1–2), 20. doi: 10.1016/j.tca.2009.02.017
-
[15]
(15) Venkatesu, P.; Lee, M. J.; Lin, H. M. J. Phys. Chem. B 2009, 113 (15), 5327. doi: 10.1021/jp8113013
-
[16]
(16) Krywka, C.; Sternemann, C.; Paulus, M.; Tolan, M.; Royer, C.; Winter, R. ChemPhysChem 2008, 9 (18), 2809. doi: 10.1002/cphc.200800522
-
[17]
(17) Robinson, D. R.; Jencks, W. P. J. Am. Chem. Soc. 1965, 87 (11), 2462. doi: 10.1021/ja01089a028
-
[18]
(18) Lim, W. K.; Rosgen, J.; Englander, S. W. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (8), 2595. doi: 10.1073/pnas.0812588106
-
[19]
(19) Hua, L.; Zhou, R. H.; Thirumalai, D.; Berne, B. J. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (44), 16928. doi: 10.1073/pnas.0808427105
-
[20]
(20) Das, P.; Zhou, R. H. J. Phys. Chem. B 2010, 114 (16), 5427. doi: 10.1021/jp911444q
-
[21]
(21) Zangi, R.; Zhou, R. H.; Berne, B. J. J. Am. Chem. Soc. 2009, 131 (4), 1535. doi: 10.1021/ja807887g
-
[22]
(22) Wetlaufer, D. B.; Coffin, R. L.; Malik, S. K.; Stoller, L. J. Am. Chem. Soc. 1964, 86 (3), 508. doi: 10.1021/ja01057a045
-
[23]
(23) Finer, E. G.; Franks, F.; Tait, M. J. J. Am. Chem. Soc. 1972, 94 (13), 4424. doi: 10.1021/ja00768a004
-
[24]
(24) Das, A.; Mukhopadhyay, C. J. Phys. Chem. B 2009, 113 (38), 12816. doi: 10.1021/jp906350s
-
[25]
(25) Idrissi, A.; Cinar, E.; Longelin, S.; Damay, P. J. Mol. Liq. 2004, 110 (1–3), 201. doi: 10.1016/j.molliq.2003.09.015
-
[26]
(26) Frank, H. S.; Franks, F. J. Chem. Phys. 1968, 48 (10), 4746. doi: 10.1063/1.1668057
-
[27]
(27) Zou, Q.; Bennion, B. J.; Daggett, V.; Murphy, K. P. J. Am. Chem. Soc. 2002, 124 (7), 1192. doi: 10.1021/ja004206b
-
[28]
(28) Sarma, R.; Paul, S. J. Chem. Phys. 2011, 135 (17), 174501. doi: 10.1063/1.3655672
-
[29]
(29) Koishi, T.; Yasuoka, K.; Wilow, S. Y.; Fujikawa, S.; Zeng, X. C. J. Chem. Theory Comput. 2013, 9 (6), 2540. doi: 10.1021/ct3010968
-
[30]
(30) Sarma, R.; Paul, S. J. Phys. Chem. B 2012, 116 (9), 2831. doi: 10.1021/jp2104402
-
[31]
(31) Yang, L. J.; Gao, Y. Q. J. Am. Chem. Soc. 2010, 132 (2), 842. doi: 10.1021/ja9091825
-
[32]
(32) Wei, H. Y.; Fan, Y. B.; Gao, Y. Q. J. Phys. Chem. B 2010, 114 (1), 557. doi: 10.1021/jp9084926
-
[33]
(33) Wei, H. Y.; Yang, L. J.; Gao, Y. Q. J. Phys. Chem. B 2010, 114 (36), 11820. doi: 10.1021/jp103770y
-
[34]
(34) Shao, Q.; Fan, Y. B.; Yang, L. J.; Gao, Y. Q. J. Chem. Phys. 2012, 136 (11), 115101. doi: 10.1063/1.3692801
-
[35]
(35) Shao, Q.; Gao, Y. Q. J. Chem. Phys. 2012, 137 (14), 145101. doi: 10.1063/1.4757419
-
[36]
(36) Shao, Q.; Fan, Y. B.; Yang, L. J.; Gao, Y. Q. J. Chem. Theory Comput. 2012, 8 (11), 4364. doi: 10.1021/ct3002267
-
[37]
(37) Gao, Y. Q. J. Phys. Chem. B 2012, 116 (33), 9934. doi: 10.1021/jp305532h
-
[38]
(38) Xie, W. J.; Gao, Y. Q. Faraday Discuss. 2013, 160, 191. doi: 10.1039/C2FD20065A
-
[39]
(39) Xie, W. J.; Gao, Y. Q. J. Phys. Chem. Lett. 2013, 4 (24), 4247. doi: 10.1021/jz402072g
-
[40]
(40) Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Nature 2001, 414 (6860), 188. doi: 10.1038/35102535
-
[41]
(41) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79 (2), 926. doi: 10.1063/1.445869
-
[42]
(42) Duffy, E. M.; Kowalczyk, P. J.; Jorgensen, W. L. J. Am. Chem. Soc. 1993, 115 (20), 9271. doi: 10.1021/ja00073a050
-
[43]
(43) Kast, K. M.; Brickmann, J.; Kast, S. M.; Berry, R. S. J. Phys. Chem. A 2003, 107 (27), 5342. doi: 10.1021/jp027336a
-
[44]
(44) Berendsen, H. J. C.; Postma, J. P. M.; Vangunsteren, W. F.; Dinola, A.; Haak, J. R. J. Chem. Phys. 1984, 81 (8), 3684. doi: 10.1063/1.448118
-
[45]
(45) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98 (12), 10089. doi: 10.1063/1.464397
-
[46]
(46) Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23 (3), 327. doi: 10.1016/0021-9991(77)90098-5
-
[47]
(47) Hummer, G. Mol. Phys. 2007, 105 (2–3), 201. doi: 10.1080/00268970601140784
-
[48]
(48) Sarma, R.; Paul, S. J. Phys. Chem. B 2013, 117 (18), 5691. doi: 10.1021/jp401750v
-
[1]
-
-
-
[1]
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
-
[2]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[3]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[4]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[5]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[6]
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
-
[7]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[8]
Jinghua Wang , Yanxin Yu , Yanbiao Ren , Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057
-
[9]
Mingjie Lei , Wenting Hu , Kexin Lin , Xiujuan Sun , Haoshen Zhang , Ye Qian , Tongyue Kang , Xiulin Wu , Hailong Liao , Yuan Pan , Yuwei Zhang , Diye Wei , Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083
-
[10]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[11]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[12]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[13]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[14]
Jiayu Gu , Siqi Wang , Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012
-
[15]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[16]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[17]
Jiageng Li , Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098
-
[18]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[19]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[20]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(693)
- HTML views(23)