Citation: YE Chuan-Xiang, MA Hui-Li, LIANG Wan-Zhen. Two-Photon Absorption Properties of Chromophores of a Few Fluorescent Proteins: a Theoretical Investigation[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 301-312. doi: 10.3866/PKU.WHXB201512112
-
The experimentally-measured two-photon absorption (TPA) spectra of fluorescent proteins (FPs) show quite different characteristics with one-photon absorption (OPA) spectra in both the low- and high-frequency regions. To reveal the mechanism that results in the discrepancies between OPA and TPA spectra, and to obtain the fundamental structure-property relationships of FPs, here we conduct a theoretical study of OPA and TPA properties of three FP chromophores, including a neutral chromophore in enhanced cyan fluorescent protein (ECFP) and two anionic FP chromophores in DsRed2 and TagRFP. Both the pure electronic and vibrationally-resolved TPA spectra have been calculated. The calculated spectra were found to be highly dependent on the density functional theory exchange-correlation functional used. The experimental spectral lineshapes of vibronic spectra can be well produced when the Franck- Condon (FC) scattering and Herzberg-Teller (HT) vibronic coupling effects were taken into account and the structure parameters produced by CAM-B3LYP were applied in the theoretical calculations. The HT effects affect the low-frequency absorption bands corresponding to the electronic transition from S0 to S1 for two anionic chromophores, leading to a blue-shift of the TPA maximum relative to OPA maximum, while the HT effect is insignificant in the higher-frequency region of the TPA spectra. The intramolecular charge-transfer character of higher-lying excited states explains why the TPA spectra in the higher-frequency region are much stronger than those in the low-frequency region.
-
-
[1]
(1) Zimmer, M. Chem. Rev. 2002, 102, 759. doi: 10.1021/cr010142r
-
[2]
(2) Drobizhev, M.; Makarov, N. S.; Tillo, S. E.; Hughes, T. E.; Rebane, A. Nat. Methods 2011, 8, 393. doi: 10.1038/nmeth.1596
-
[3]
(3) Drobizhev, M.; Tillo, S.; Makarov, N.; Hughes, T.; Rebane, A. J. Phys. Chem. B 2009, 113, 855. doi: 10.1021/jp8087379
-
[4]
(4) Spiess, E.; Bestvater, F.; Heckel-pompey, A.; Toth, K.; Hacker, M.; Stobrawa, G.; Feurer, T.; Wotzlaw, C.; Berchner-Pfannschmidt, U.; Porwol, T.; Acker, H. J. Microsc. 2005, 217, 200. doi: 10.1111/jmi.2005.217.issue-3
-
[5]
(5) Katan, C.; Terenziani, F.; Mongin, O.; Werts, M. H.; Porres, L.; Pons, T.; Mertz, J.; Tretiak, S.; Blanchard-Desce, M. J. Phys. Chem. A 2005, 109, 3024. doi: 10.1021/jp044193e
-
[6]
(6) Xu, C.; Zipfel, W.; Shear, J. B.; Williams, R. M.; Webb, W. W. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 10763. doi: 10.1073/pnas.93.20.10763
-
[7]
(7) Tsien, R. Y. Annu. Rev. Biochem. 1998, 67, 509. doi: 10.1146/annurev.biochem.67.1.509
-
[8]
(8) Hunter, S.; Kiamilev, F.; Esener, S.; Parthenopoulos, D. A.; Rentzepis, P. M. Appl. Optics 1990, 29, 2058. doi: 10.1364/AO.29.002058
-
[9]
(9) Chudakov, D. M.; Matz, M. V.; Lukyanov, S.; Lukyanov, K. A. Physiol. Rev. 2010, 90, 1103. doi: 10.1152/physrev.00038.2009
-
[10]
(10) Oulianov, D.; Tomov, I.; Dvornikov, A.; Rentzepis, P. Opt. Commun. 2001, 191, 235. doi: 10.1016/S0030-401801121-X
-
[11]
(11) Nanda, K. D.; Krylov, A. I. J. Chem. Phys. 2015, 142, 064118. doi: 10.1063/1.4907715
-
[12]
(12) Yuan, L.; Lin, W. Y.; Chen, H.; Zhu, S.; He, L. W. Angew. Chem. Int. Edit. 2013, 52, 10018. doi: 10.1002/anie.201303179
-
[13]
(13) Terenziani, F.; Katan, C.; Badaeva, E.; Tretiak, S.; Blanchard-Desce, M. Adv. Mater. 2008, 20, 4641. doi: 10.1002/adma.v20:24
-
[14]
(14) Beerepoot, M. T.; Friese, D. H.; Ruud, K. Phys. Chem. Chem. Phys. 2014, 16, 5958. doi: 10.1039/c3cp55205e
-
[15]
(15) Nifosí, R.; Luo, Y. J. Phys. Chem. B 2007, 111, 14043. doi: 10.1021/jp075545v
-
[16]
(16) Vivas, M.; Silva, D.; Misoguti, L.; Zalesny, R.; Bartkowiak, W.; Mendonca, C. R. J. Phys. Chem. A 2010, 114, 3466. doi: 10.1021/jp910010g
-
[17]
(17) Tretiak, S.; Chernyak, V. J. Chem. Phys. 2003, 119, 8809. doi: 10.1063/1.1614240
-
[18]
(18) Kamarchik, E.; Krylov, A. I. J. Chem. Phys. Lett. 2011, 2, 488. doi: 10.1021/jz101616g
-
[19]
(19) Steindal, A. H.; Olsen, J. M. H.; Ruud, K.; Frediani, L.; Kongsted, J. Phys. Chem. Chem. Phys. 2012, 14, 5440. doi: 10.1039/c2cp23537d
-
[20]
(20) Nayyar, I. H.; Masunov, A. E.; Tretiak, S. J. Phys. Chem. C 2013, 117, 18170. doi: 10.1021/jp403981d
-
[21]
(21) Christiansen, O.; Koch, H.; Jørgensen, P. Chem. Phys. Lett. 1995, 243, 409. doi: 10.1016/0009-261400841-Q
-
[22]
(22) Drobizhev, M.; Makarov, N.; Hughes, T.; Rebane, A. J. Phys. Chem. B 2007, 111, 14051. doi: 10.1021/jp075879k
-
[23]
(23) Ma, H. L.; Zhao, Y.; Liang, W. Z. J. Chem. Phys. 2014, 140, 094107. doi: 10.1063/1.4867273
-
[24]
(24) Liang, W. Z.; Ma, H. L.; Zang, H.; Ye, C. X. Int. J. Quantum Chem. 2015, 115, 550. doi: 10.1002/qua.24824
-
[25]
(25) Liu, J.; Liang, W. Z. J. Chem. Phys. 2011, 135, 184111. doi: 10.1063/1.3659312
-
[26]
(26) Liu, J.; Liang, W. Z. J. Chem. Phys. 2011, 135, 014113. doi: 10.1063/1.3605504
-
[27]
(27) Liu, J.; Liang, W. Z. J. Chem. Phys. 2013, 138, 024101. doi: 10.1063/1.4773397
-
[28]
(28) Zeng, Q.; Liu, J.; Liang, W. Z. J. Chem. Phys. 2014, 140, 18A506. doi: 10.1063/1.4863563
-
[29]
(29) Zeng, Q.; Liang, W. Z. J. Chem. Phys. 2015, 143, 134104. doi: 10.1063/1.4931734
-
[30]
(30) Lelimousin, M.; Noirclerc-Savoye, M.; Lazareno-Saez, C.; Paetzold, B.; Le Vot, S.; Chazal, R.; Macheboeuf, P.; Field, M. J.; Bourgeois, D.; Royant, A. Biochemistry 2009, 48, 10038. doi: 10.1021/bi901093w
-
[31]
(31) Pletnev, S.; Subach, F. V.; Dauter, Z.; Wlodawer, A.; Verkhusha, V. V. J. Mol. Biol. 2012, 417, 144. doi: 10.1016/j.jmb.2012.01.044
-
[32]
(32) Hales, J. M.; Hagan, D. J.; Van Stryland, E. W.; Schafer, K.; Morales, A.; Belfield, K. D.; Pacher, P.; Kwon, O.; Zojer, E.;
Brédas, J. L. J. Chem. Phys. 2004, 121, 3152. doi: 10.1063/1.1770726
-
[33]
(33) Drobizhev, M.; Karotki, A.; Kruk, M.; Rebane, A. Chem. Phys. Lett. 2002, 355, 175. doi: 10.1016/S0009-261400206-3
-
[34]
(34) Wanko, M.; García-Risueño, P.; Rubio, A. Phys. Status Solidi-b 2012, 249, 392. doi: 10.1002/pssb.201100536
-
[35]
(35) McClain, W. J. Chem. Phys. 1971, 55, 2789. doi: 10.1063/1.1676494
-
[36]
(36) Dick, B.; Hochstrasser, R.; Trommsdorff, H. Nonlinear Optical Properties of Organic Molecules and Crystals; Chemla, D. S., Zyss, J. Eds; Academic Press: Orlando, 1987; pp 159–212.
-
[37]
(37) Shen, Y. R. The Principles of Nonlinear Optics, 1st ed.; Wiley-Interscience: New York, 1984; pp 216–795.
-
[38]
(38) Bishop, D. M.; Luis, J. M.; Kirtman, B. J. Chem. Phys. 2002, 116, 9729.
-
[39]
(39) Silverstein, D. W.; Jensen, L. J. Chem. Phys. 2012, 136, 064111. doi: 10.1063/1.3684236
-
[40]
(40) Ma, H. L.Theoretical Study on the Optical Properties of Molecules and Noble Metal Nanoparticles. Ph. D. Dissertation, University of Science and Technology of China, Hefei, 2014. [马会利. 分子与惰性金属纳米粒子光学性质的理论研究[D]. 合肥: 中国科学技术大学, 2014.]
-
[41]
(41) Santoro, F.; Cappelli, C.; Barone, V. J. Chem. Theory Comput. 2011, 7, 1824. doi: 10.1021/ct200054w
-
[42]
(42) Ferrer, F. A.; Barone, V.; Cappelli, C.; Santoro, F. J. Chem. Theory Comput. 2013, 9, 3597. doi: 10.1021/ct400197y
-
[43]
(43) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, 2009.
-
[44]
(44) Dalton, a Molecular Electronic Structure Program; Release Dalton 2011, 2011. see http://daltonprogram.org.
-
[45]
(45) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999. doi: 10.1021/cr9904009
-
[46]
(46) Scalmani, G.; Frisch, M. J. J. Chem. Phys. 2010, 132, 114110. doi: 10.1063/1.3359469
-
[47]
(47) Luzanov, A.; Sukhorukov, A.; Umanskii, V. Theor. Exp. Chem. 1976, 10, 354. doi: 10.1007/BF00526670
-
[48]
(48) Nielsen, S. B.; Lapierre, A.; Andersen, J. U.; Pedersen, U.; Tomita, S.; Andersen, L. Phys. Rev. Lett. 2001, 87, 228102. doi: 10.1103/PhysRevLett.87.228102
-
[49]
(49) Sun, C.; Liu, J.; Liang, W. Z.; Zhao, Y. Chin. J. Chem. Phys. 2013, 26, 617. doi: 10.1063/1674-0068/26/06/617-626
-
[50]
(50) Marques, M. A.; López, X.; Varsano, D.; Castro, A.; Rubio, A. Phys. Rev. Lett. 2003, 90, 258101. doi: 10.1103/PhysRevLett.90.258101
-
[51]
(51) Nienhaus, K.; Nar, H.; Heilker, R.; Wiedenmann, J.; Nienhaus, G. U. J. Am. Chem. Soc. 2008, 130, 12578. doi: 10.1021/ja8046443
-
[52]
(52) Stavrov, S. S.; Solntsev, K. M.; Tolbert, L. M.; Huppert, D. J. Am. Chem. Soc. 2006, 128, 1540. doi: 10.1021/ja0555421
-
[53]
(53) Subach, F. V.; Verkhusha, V. V. Chem. Rev. 2012, 112, 4308. doi: 10.1021/cr2001965
-
[1]
-
-
[1]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[2]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[3]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[4]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[5]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[6]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[7]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[8]
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
-
[9]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[10]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[11]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[12]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[13]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[14]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[15]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[16]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[17]
Yunxin Xu , Wenbo Zhang , Jing Yan , Wangchang Geng , Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008
-
[18]
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
-
[19]
Jin Yan , Chengxia Tong , Yajie Li , Yue Gu , Xuejian Qu , Shigang Wei , Wanchun Zhu , Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008
-
[20]
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(365)
- HTML views(41)