Citation:
	            
		            YE  Chuan-Xiang, MA  Hui-Li, LIANG  Wan-Zhen. Two-Photon Absorption Properties of Chromophores of a Few Fluorescent Proteins: a Theoretical Investigation[J]. Acta Physico-Chimica Sinica,
							;2016, 32(1): 301-312.
						
							doi:
								10.3866/PKU.WHXB201512112
						
					
				
					
				
	        
- 
	                	The experimentally-measured two-photon absorption (TPA) spectra of fluorescent proteins (FPs) show quite different characteristics with one-photon absorption (OPA) spectra in both the low- and high-frequency regions. To reveal the mechanism that results in the discrepancies between OPA and TPA spectra, and to obtain the fundamental structure-property relationships of FPs, here we conduct a theoretical study of OPA and TPA properties of three FP chromophores, including a neutral chromophore in enhanced cyan fluorescent protein (ECFP) and two anionic FP chromophores in DsRed2 and TagRFP. Both the pure electronic and vibrationally-resolved TPA spectra have been calculated. The calculated spectra were found to be highly dependent on the density functional theory exchange-correlation functional used. The experimental spectral lineshapes of vibronic spectra can be well produced when the Franck- Condon (FC) scattering and Herzberg-Teller (HT) vibronic coupling effects were taken into account and the structure parameters produced by CAM-B3LYP were applied in the theoretical calculations. The HT effects affect the low-frequency absorption bands corresponding to the electronic transition from S0 to S1 for two anionic chromophores, leading to a blue-shift of the TPA maximum relative to OPA maximum, while the HT effect is insignificant in the higher-frequency region of the TPA spectra. The intramolecular charge-transfer character of higher-lying excited states explains why the TPA spectra in the higher-frequency region are much stronger than those in the low-frequency region.
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
(1) Zimmer, M. Chem. Rev. 2002, 102, 759. doi: 10.1021/cr010142r
 - 
			
                    [2]
                
			
(2) Drobizhev, M.; Makarov, N. S.; Tillo, S. E.; Hughes, T. E.; Rebane, A. Nat. Methods 2011, 8, 393. doi: 10.1038/nmeth.1596
 - 
			
                    [3]
                
			
(3) Drobizhev, M.; Tillo, S.; Makarov, N.; Hughes, T.; Rebane, A. J. Phys. Chem. B 2009, 113, 855. doi: 10.1021/jp8087379
 - 
			
                    [4]
                
			
(4) Spiess, E.; Bestvater, F.; Heckel-pompey, A.; Toth, K.; Hacker, M.; Stobrawa, G.; Feurer, T.; Wotzlaw, C.; Berchner-Pfannschmidt, U.; Porwol, T.; Acker, H. J. Microsc. 2005, 217, 200. doi: 10.1111/jmi.2005.217.issue-3
 - 
			
                    [5]
                
			
(5) Katan, C.; Terenziani, F.; Mongin, O.; Werts, M. H.; Porres, L.; Pons, T.; Mertz, J.; Tretiak, S.; Blanchard-Desce, M. J. Phys. Chem. A 2005, 109, 3024. doi: 10.1021/jp044193e
 - 
			
                    [6]
                
			
(6) Xu, C.; Zipfel, W.; Shear, J. B.; Williams, R. M.; Webb, W. W. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 10763. doi: 10.1073/pnas.93.20.10763
 - 
			
                    [7]
                
			
(7) Tsien, R. Y. Annu. Rev. Biochem. 1998, 67, 509. doi: 10.1146/annurev.biochem.67.1.509
 - 
			
                    [8]
                
			
(8) Hunter, S.; Kiamilev, F.; Esener, S.; Parthenopoulos, D. A.; Rentzepis, P. M. Appl. Optics 1990, 29, 2058. doi: 10.1364/AO.29.002058
 - 
			
                    [9]
                
			
(9) Chudakov, D. M.; Matz, M. V.; Lukyanov, S.; Lukyanov, K. A. Physiol. Rev. 2010, 90, 1103. doi: 10.1152/physrev.00038.2009
 - 
			
                    [10]
                
			
(10) Oulianov, D.; Tomov, I.; Dvornikov, A.; Rentzepis, P. Opt. Commun. 2001, 191, 235. doi: 10.1016/S0030-401801121-X
 - 
			
                    [11]
                
			
(11) Nanda, K. D.; Krylov, A. I. J. Chem. Phys. 2015, 142, 064118. doi: 10.1063/1.4907715
 - 
			
                    [12]
                
			
(12) Yuan, L.; Lin, W. Y.; Chen, H.; Zhu, S.; He, L. W. Angew. Chem. Int. Edit. 2013, 52, 10018. doi: 10.1002/anie.201303179
 - 
			
                    [13]
                
			
(13) Terenziani, F.; Katan, C.; Badaeva, E.; Tretiak, S.; Blanchard-Desce, M. Adv. Mater. 2008, 20, 4641. doi: 10.1002/adma.v20:24
 - 
			
                    [14]
                
			
(14) Beerepoot, M. T.; Friese, D. H.; Ruud, K. Phys. Chem. Chem. Phys. 2014, 16, 5958. doi: 10.1039/c3cp55205e
 - 
			
                    [15]
                
			
(15) Nifosí, R.; Luo, Y. J. Phys. Chem. B 2007, 111, 14043. doi: 10.1021/jp075545v
 - 
			
                    [16]
                
			
(16) Vivas, M.; Silva, D.; Misoguti, L.; Zalesny, R.; Bartkowiak, W.; Mendonca, C. R. J. Phys. Chem. A 2010, 114, 3466. doi: 10.1021/jp910010g
 - 
			
                    [17]
                
			
(17) Tretiak, S.; Chernyak, V. J. Chem. Phys. 2003, 119, 8809. doi: 10.1063/1.1614240
 - 
			
                    [18]
                
			
(18) Kamarchik, E.; Krylov, A. I. J. Chem. Phys. Lett. 2011, 2, 488. doi: 10.1021/jz101616g
 - 
			
                    [19]
                
			
(19) Steindal, A. H.; Olsen, J. M. H.; Ruud, K.; Frediani, L.; Kongsted, J. Phys. Chem. Chem. Phys. 2012, 14, 5440. doi: 10.1039/c2cp23537d
 - 
			
                    [20]
                
			
(20) Nayyar, I. H.; Masunov, A. E.; Tretiak, S. J. Phys. Chem. C 2013, 117, 18170. doi: 10.1021/jp403981d
 - 
			
                    [21]
                
			
(21) Christiansen, O.; Koch, H.; Jørgensen, P. Chem. Phys. Lett. 1995, 243, 409. doi: 10.1016/0009-261400841-Q
 - 
			
                    [22]
                
			
(22) Drobizhev, M.; Makarov, N.; Hughes, T.; Rebane, A. J. Phys. Chem. B 2007, 111, 14051. doi: 10.1021/jp075879k
 - 
			
                    [23]
                
			
(23) Ma, H. L.; Zhao, Y.; Liang, W. Z. J. Chem. Phys. 2014, 140, 094107. doi: 10.1063/1.4867273
 - 
			
                    [24]
                
			
(24) Liang, W. Z.; Ma, H. L.; Zang, H.; Ye, C. X. Int. J. Quantum Chem. 2015, 115, 550. doi: 10.1002/qua.24824
 - 
			
                    [25]
                
			
(25) Liu, J.; Liang, W. Z. J. Chem. Phys. 2011, 135, 184111. doi: 10.1063/1.3659312
 - 
			
                    [26]
                
			
(26) Liu, J.; Liang, W. Z. J. Chem. Phys. 2011, 135, 014113. doi: 10.1063/1.3605504
 - 
			
                    [27]
                
			
(27) Liu, J.; Liang, W. Z. J. Chem. Phys. 2013, 138, 024101. doi: 10.1063/1.4773397
 - 
			
                    [28]
                
			
(28) Zeng, Q.; Liu, J.; Liang, W. Z. J. Chem. Phys. 2014, 140, 18A506. doi: 10.1063/1.4863563
 - 
			
                    [29]
                
			
(29) Zeng, Q.; Liang, W. Z. J. Chem. Phys. 2015, 143, 134104. doi: 10.1063/1.4931734
 - 
			
                    [30]
                
			
(30) Lelimousin, M.; Noirclerc-Savoye, M.; Lazareno-Saez, C.; Paetzold, B.; Le Vot, S.; Chazal, R.; Macheboeuf, P.; Field, M. J.; Bourgeois, D.; Royant, A. Biochemistry 2009, 48, 10038. doi: 10.1021/bi901093w
 - 
			
                    [31]
                
			
(31) Pletnev, S.; Subach, F. V.; Dauter, Z.; Wlodawer, A.; Verkhusha, V. V. J. Mol. Biol. 2012, 417, 144. doi: 10.1016/j.jmb.2012.01.044
 - 
			
                    [32]
                
			
(32) Hales, J. M.; Hagan, D. J.; Van Stryland, E. W.; Schafer, K.; Morales, A.; Belfield, K. D.; Pacher, P.; Kwon, O.; Zojer, E.;
Brédas, J. L. J. Chem. Phys. 2004, 121, 3152. doi: 10.1063/1.1770726
 - 
			
                    [33]
                
			
(33) Drobizhev, M.; Karotki, A.; Kruk, M.; Rebane, A. Chem. Phys. Lett. 2002, 355, 175. doi: 10.1016/S0009-261400206-3
 - 
			
                    [34]
                
			
(34) Wanko, M.; García-Risueño, P.; Rubio, A. Phys. Status Solidi-b 2012, 249, 392. doi: 10.1002/pssb.201100536
 - 
			
                    [35]
                
			
(35) McClain, W. J. Chem. Phys. 1971, 55, 2789. doi: 10.1063/1.1676494
 - 
			
                    [36]
                
			
(36) Dick, B.; Hochstrasser, R.; Trommsdorff, H. Nonlinear Optical Properties of Organic Molecules and Crystals; Chemla, D. S., Zyss, J. Eds; Academic Press: Orlando, 1987; pp 159–212.
 - 
			
                    [37]
                
			
(37) Shen, Y. R. The Principles of Nonlinear Optics, 1st ed.; Wiley-Interscience: New York, 1984; pp 216–795.
 - 
			
                    [38]
                
			
(38) Bishop, D. M.; Luis, J. M.; Kirtman, B. J. Chem. Phys. 2002, 116, 9729.
 - 
			
                    [39]
                
			
(39) Silverstein, D. W.; Jensen, L. J. Chem. Phys. 2012, 136, 064111. doi: 10.1063/1.3684236
 - 
			
                    [40]
                
			
(40) Ma, H. L.Theoretical Study on the Optical Properties of Molecules and Noble Metal Nanoparticles. Ph. D. Dissertation, University of Science and Technology of China, Hefei, 2014. [马会利. 分子与惰性金属纳米粒子光学性质的理论研究[D]. 合肥: 中国科学技术大学, 2014.]
 - 
			
                    [41]
                
			
(41) Santoro, F.; Cappelli, C.; Barone, V. J. Chem. Theory Comput. 2011, 7, 1824. doi: 10.1021/ct200054w
 - 
			
                    [42]
                
			
(42) Ferrer, F. A.; Barone, V.; Cappelli, C.; Santoro, F. J. Chem. Theory Comput. 2013, 9, 3597. doi: 10.1021/ct400197y
 - 
			
                    [43]
                
			
(43) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, 2009.
 - 
			
                    [44]
                
			
(44) Dalton, a Molecular Electronic Structure Program; Release Dalton 2011, 2011. see http://daltonprogram.org.
 - 
			
                    [45]
                
			
(45) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999. doi: 10.1021/cr9904009
 - 
			
                    [46]
                
			
(46) Scalmani, G.; Frisch, M. J. J. Chem. Phys. 2010, 132, 114110. doi: 10.1063/1.3359469
 - 
			
                    [47]
                
			
(47) Luzanov, A.; Sukhorukov, A.; Umanskii, V. Theor. Exp. Chem. 1976, 10, 354. doi: 10.1007/BF00526670
 - 
			
                    [48]
                
			
(48) Nielsen, S. B.; Lapierre, A.; Andersen, J. U.; Pedersen, U.; Tomita, S.; Andersen, L. Phys. Rev. Lett. 2001, 87, 228102. doi: 10.1103/PhysRevLett.87.228102
 - 
			
                    [49]
                
			
(49) Sun, C.; Liu, J.; Liang, W. Z.; Zhao, Y. Chin. J. Chem. Phys. 2013, 26, 617. doi: 10.1063/1674-0068/26/06/617-626
 - 
			
                    [50]
                
			
(50) Marques, M. A.; López, X.; Varsano, D.; Castro, A.; Rubio, A. Phys. Rev. Lett. 2003, 90, 258101. doi: 10.1103/PhysRevLett.90.258101
 - 
			
                    [51]
                
			
(51) Nienhaus, K.; Nar, H.; Heilker, R.; Wiedenmann, J.; Nienhaus, G. U. J. Am. Chem. Soc. 2008, 130, 12578. doi: 10.1021/ja8046443
 - 
			
                    [52]
                
			
(52) Stavrov, S. S.; Solntsev, K. M.; Tolbert, L. M.; Huppert, D. J. Am. Chem. Soc. 2006, 128, 1540. doi: 10.1021/ja0555421
 - 
			
                    [53]
                
			
(53) Subach, F. V.; Verkhusha, V. V. Chem. Rev. 2012, 112, 4308. doi: 10.1021/cr2001965
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
 - 
				[2]
				
Yupeng TANG , Haiying YANG , Fan JIN , Nan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460
 - 
				[3]
				
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
 - 
				[4]
				
Fengying Zhang , Yanglin Mei , Yuman Jiang , Shenshen Zheng , Kaibo Zheng , Ying Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118
 - 
				[5]
				
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
 - 
				[6]
				
Yi Li , Zhaoxiang Cao , Peng Liu , Xia Wu , Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154
 - 
				[7]
				
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006
 - 
				[8]
				
Yiting Huo , Xin Zhou , Feifan Zhao , Chenbin Ai , Zhen Wu , Zhidong Chang , Bicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148
 - 
				[9]
				
Xin Zhou , Yiting Huo , Songyu Yang , Bowen He , Xiaojing Wang , Zhen Wu , Jianjun Zhang . Understanding the effect of pH on protonated COF during photocatalytic H2O2 production by femtosecond transient absorption spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(12): 100160-0. doi: 10.1016/j.actphy.2025.100160
 - 
				[10]
				
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
 - 
				[11]
				
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
 - 
				[12]
				
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064
 - 
				[13]
				
Supin Zhao , Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024
 - 
				[14]
				
Xueting Cao , Shuangshuang Cha , Ming Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041
 - 
				[15]
				
Wen Jiang , Jieli Lin , Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144
 - 
				[16]
				
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
 - 
				[17]
				
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
 - 
				[18]
				
Xiaojun Liu , Lang Qin , Yanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018
 - 
				[19]
				
Wenliang Wang , Weina Wang , Lixia Feng , Nan Wei , Sufan Wang , Tian Sheng , Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063
 - 
				[20]
				
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(0)
 - Abstract views(616)
 - HTML views(71)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: