Citation:
ZHU Qing-Gong, SUN Xiao-Fu, KANG Xin-Chen, MA Jun, QIAN Qing-Li, HAN Bu-Xing. Cu2S on Cu Foam as Highly Efficient Electrocatalyst for Reduction of CO2 to Formic Acid[J]. Acta Physico-Chimica Sinica,
;2016, 32(1): 261-266.
doi:
10.3866/PKU.WHXB201512101
-
The electrocatalytic reduction of CO2 to HCOOH is an interesting topic and the efficiency usually depends strongly on the materials of the electrodes. Herein, nanostructured Cu2S on Cu-foam was prepared by electro-deposition method and characterized by means of scanning electron microscope (SEM) and X-ray diffraction (XRD). The Cu2S/Cu-foam electrode was used for the first time in the electrocatalytic reduction of CO2 to HCOOH, and acetonitrile (MeCN) with 0.5 mol·L-1 1-butyl-3- methylimidazolium tetrafluoroborate (BmimBF4) was used as the electrolyte. It was demonstrated that the electrolysis system was very efficient for the electrochemical reaction, and faradaic efficiency of HCOOH (FEHCOOH) and reduction current density could reach 85% and 5.3 mA·cm-2, respectively.
-
Keywords:
- Copper(I) sulfide,
- Copper foam,
- Formic acid,
- Electrochemistry,
- CO2 reduction
-
-
-
[1]
(1) He, M. Y.; Sun, Y. H.; Han, B. X. Angew. Chem. Int. Edit. 2013, 52, 9620. doi: 10.1002/anie.201209384
-
[2]
(2) Wang, W.; Wang, S. P.; Ma, X. B.; Gong, J. L. Chem. Soc. Rev. 2011, 40, 3703. doi: 10.1039/C1CS15008A
-
[3]
(3) Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, Z. Energy Environ. Sci. 2013, 6, 3112. doi: 10.1039/C3EE41272E
-
[4]
(4) Whipple, D. T.; Kenis, P. J. A. J. Phys. Chem. Lett. 2010, 1, 3451. doi: 10.1021/jz1012627
-
[5]
(5) Zhao, C. C.; He, X. M.; Wang, L.; Guo, J. W. Chem. Ind. En. Pro. (China) 2013, 32, 373. [赵晨辰, 何向明, 王莉, 郭建伟. 化工进展, 2013, 32, 373.]
-
[6]
(6) Zhou, F.; Liu, S. M.; Alshammari, A. S.; Deng, Y. Q. Chin. Sci. Bull. 2015, 60, 2466. [周峰, 刘士民, Alshammari, A. S., 邓友全. 科学通报, 2015, 60, 2466.] doi: 10.1360/N972015-00339
-
[7]
(7) Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. Chem. Soc. Rev. 2014, 43, 631. doi: 10.1039/C3CS60323G
-
[8]
(8) Rosen, B. A.; Salehi-khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Science 2011, 334, 643. doi: 10.1126/science.1209786
-
[9]
(9) Agarwal, A. S.; Zhai, Y. M.; Hill, D.; Sridhar, N. ChemSusChem 2011, 4, 1301. doi: 10.1002/cssc.201100220
-
[10]
(10) Chen, Y. H.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 1986. doi: 10.1021/ja2108799
-
[11]
(11) Zhang, S.; Kang, P.; Meyer, T. J. J. Am. Chem. Soc. 2014, 136, 1734. doi: 10.1021/ja4113885
-
[12]
(12) Kang, P.; Zhang, S.; Meer, T. J.; Brookhart, M. Angew. Chem. Int. Edit. 2014, 53, 8709. doi: 10.1002/anie.201310722
-
[13]
(13) Watkins, J. D.; Bocarsly, A. B. ChemSusChem 2014, 7, 284. doi: 10.1002/cssc.201300659
-
[14]
(14) Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 34, 7231. doi: 10.1021/ja3010978
-
[15]
(15) Kortlever, R.; Peter, I.; Koper, S.; Koper, M. T. M. ACS Catal. 2015, 5, 3916. doi: 10.1021/acscatal.5b00602
-
[16]
(16) Lu, X.; Leung, D. Y. C.; Wang, H. Z.; Leung, M. K. H.; Xuan, J. ChemElectroChem 2014, 1, 836. doi: 10.1002/celc.201300206
-
[17]
(17) Huan, T. N.; Andreiadis, E.; Heidkamp, J.; Simon, P.; Derat, E.; Cobo, S.; Royal, G.; Berqmann, A.; Strasser, P.; Dau, H.; Artero, V.; Fontecave, M. J. Mater. Chem. A 2015, 3, 3901. doi: 10.1039/C4TA07022D
-
[18]
(18) Zhu, J.; Yu, X. C.; Wang, S. M.; Dong, W. W.; Hu, H. L.; Fang, X. D.; Dai, S. Y. Acta. Phys. -Chim. Sin. 2013, 29, 533. [朱俊, 余学超, 王时茂, 董伟伟, 胡华林, 方晓东, 戴松元. 物理化学学报, 2013, 29, 533.] doi: 10.3866/PKU.WHXB201212124
-
[19]
(19) Chung, J. S.; Sohn, H. J. J. Power Sources 2002, 108, 226. doi: 10.1016/S0378-7753(02)00024-1
-
[20]
(20) Lai, C. H.; Huang, K. W.; Cheng, J. H.; Lee, C. Y.; Hwang, B. J.; Chen, L. J. J. Mater. Chem. 2010, 20, 6638. doi: 10.1039/C0JM00434K
-
[21]
(21) Yu, X. C.; Zhu, J.; Liu, F.; Wei, J. F.; Hu, L. H.; Dai, S. Y. Sci. China Chem. 2013, 56, 977. doi: 10.1007/s11426-012-4810-8
-
[22]
(22) Ni, S. B.; Li, T. L.; Yang, X. L. Thin Solid Films 2012, 520, 6705. doi: 10.1016/j.tsf.2012.06.074
-
[23]
(23) Ni, S. B.; Lv, X. H.; Li, T.; Yang, X. L. Mater. Chem. Phys. 2013, 143, 349. doi: 10.1016/j.matchemphys.2013.09.008
-
[24]
(24) Kar, P.; Farsinezhad, S.; Zhang, X. J.; Shankar, K. Nanoscale 2014, 6, 14305. doi: 10.1039/C4NR05371K
-
[25]
(25) Sun, X. F.; Tian, Q. Q.; Xue, Z. M.; Zhang, Y. W.; Mu, T. C. RSC Adv. 2014, 4, 30282. doi: 10.1039/C4RA02594F
-
[26]
(26) Anuar, K.; Zainal, Z., Hussein, M. Z.; Saravanan, N.; Haslina, I. Sol. Energy Mater. Sol. Cells 2002, 73, 351. doi: 10.1016/S0927-0248(01)00219-7
-
[27]
(27) Ghahremaninezhad, A.; Asselin, E.; Dixon, D. G. J. Phys. Chem. C 2011, 115, 9320. doi: 10.1021/jp108283z
-
[28]
(28) Kang, X. C.; Zhu, Q. G.; Sun, X. F.; Hu, J. Y.; Zhang, J. L.; Liu, Z. M.; Han, B. X. Chem. Sci. 2016, doi: 10. 1039/c5sc03291a
-
[29]
(29) Ren, D.; Deng, Y. L.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S. ACS Catal. 2015, 5, 2814. doi: 10.1021/cs502128q
-
[30]
(30) Kas, R.; Kortlever, R.; Milbrat, A.; Koper, M. T. M.; Mul, G.; Baltrusaitis, J. Phys. Chem. Chem. Phys. 2014, 16, 12194. doi: 10.1039/C4CP01520G
-
[31]
(31) Chen, Y.; Davoisne, C.; Tarascon, J. M.; Guéry, C. J. Mater. Chem. 2012, 22, 5295. doi: 10.1039/C2JM16692E
-
[32]
(32) DiMeglio, J. L.; Rosenthal, J. J. Am. Chem. Soc. 2013, 135, 8789. doi: 10.1021/ja4033549
-
[33]
(33) Medina-Ramos, J.; DiMeglio, J. L.; Rosenthal, J. J. Am. Chem. Soc. 2014, 136, 8361. doi: 10.1021/ja501923g
-
[34]
(34) Lee, S.; Kim, D.; Lee, J. Angew. Chem. Int. Edit. 2015, 127, 14914. doi: 10.1002/ange.201505730
-
[35]
(35) Chen, Y.; Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 19969. doi: 10.10.1021/ja309317u
-
[1]
-
-
-
[1]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[2]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[3]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[4]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[5]
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
-
[6]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[7]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[8]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[9]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[10]
Yifei Cheng , Jiahui Yang , Wei Shao , Wanqun Zhang , Wanqun Hu , Weiwei Li , Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033
-
[11]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[12]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[13]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[14]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[15]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[16]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[17]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[18]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[19]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[20]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(479)
- HTML views(44)