Citation: BIAN Gao-Feng, HUANG Hua, ZHAN Ling-Ling, LÜ Xiao-Jing CAO Feng, ZHANG Cheng, ZHANG Yu-Jian, . Reversible Piezochromism and Protonation Stimuli-Response of (Z)-2-Cyano-3-(3,4-dimethoxyphenyl)acrylamide[J]. Acta Physico-Chimica Sinica, ;2016, 32(2): 589-594. doi: 10.3866/PKU.WHXB201512083
-
A 3-aryl-2-cyano acrylamide derivative (Z)-2-cyano-3-(3,4-dimethoxy-phenyl)acrylamide (CDMPA) was designed and synthesized, which exhibited piezochromism and acidchromism properties. Under external mechanical force stimuli, CDMPA showed a red-shift of 20 nm in its fluorescence emission and the mechanically induced luminescence color could return to the original state via heating or solvent vapor treatment. Powder X-ray diffraction (XRD) and fluorescence lifetime experiments indicated that the piezochromic luminescence could be attributed to the transformation from the crystalline to the amorphous phase. Additionally, the fluorescence color changed from blue to yellow with a red-shift of 33 nm using the stimulus of protonation. The emission color was recovered upon fuming with dimethyl formamide (DMF) vapor. Infrared (IR) spectra of CDMPA powder and theoretical calculation of the frontier molecular orbitals showed that protonation of the amino moieties in CDMPA had a significant effect on the frontier molecular orbitals and, thus, caused the acidchromism phenomenon. This study provides comprehensive insight into the stimuli-responsive luminescent mechanisms within this type of compound and the reversible switching of emission color may enable discovery of novel applications of CDMPA for detection and sensing devices.
-
-
[1]
(1) Irie, M.; Fukaminato, T.; Sasaki, T.; Tamai, N.; Kawai, T.Nature 2002, 420, 759. doi: 10.1038/420759a
-
[2]
(2) Lim, S. J.; An, B. K.; Jung, S. D.; Chung, M. A.; Park, S. Y.Angew. Chem. Int. Edit. 2004, 43, 6346. doi: 10.1002/anie.200461172
-
[3]
(3) Hirata, S.; Watanabe, T. Adv. Mater. 2006, 18, 2725. doi: 10.1002/adma.200600209
-
[4]
(4) Babu, S. S.; Kartha, K. K.; Ajayaghosh, A. J. Phys. Chem. Lett. 2010, 1, 3413. doi: 10.1021/jz101219y
-
[5]
(5) Che, Y. K.; Yang, X. M.; Zang, L. Chem. Commun. 2008, 1413. doi: 10.1039/B719384J
-
[6]
(6) Sagara, Y.; Kato, T. Nat. Chem. 2009, 1, 605. doi: 10.1038/nchem.411
-
[7]
(7) Weder, C. J. Mater. Chem. 2011, 21, 8235. doi: 10.1039/c1jm90068d
-
[8]
(8) Chi, Z. G.; Zhang, X. Q.; Xu, B. J.; Zhou, X.; Ma, C. P.; Zhang, Y.; Liu, S.W.; Xu, J. R. Chem. Soc. Rev. 2012, 41, 3878. doi: 10.1039/C2CS35016E
-
[9]
(9) Dong, Y. J.; Xu, B.; Zhang, J. B.; Tan, X.; Wang, L. J.; Chen, J.L.; Lv, H. G.; Wen, S. P.; Li, B.; Ye, L.; Zou, B.; Tian, W. J.Angew. Chem. Int. Edit. 2012, 51, 10782. doi: 10.1002/anie.201204660
-
[10]
(10) Yoon, S. J.; Chung, J.W.; Gierschner, J.; Kim, K. S.; Choi, M.G.; Kim, D.; Park, S. Y. J. Am. Chem. Soc. 2010, 132, 13675. doi: 10.1021/ja1044665
-
[11]
(11) Suzuki, T.; Shinkai, S.; Sada, K. Adv. Mater. 2006, 18, 1043. doi: 10.1002/adma.200502552
-
[12]
(12) Takahashi, E.; Takaya, H.; Naota, T. Chem. Eur. J. 2010, 16, 4793. doi: 10.1002/chem.200903403
-
[13]
(13) Dautel, O.; Robitzer, M.; Lere-Porte, J. P.; Serein-Spirau, F.; Moreau, J. J. Am. Chem. Soc. 2006, 128, 16213. doi: 10.1021/ja065434u
-
[14]
(14) Anthony, S. P. ChemPlusChem 2012, 77, 518. doi: 10.1002/cplu.201200073
-
[15]
(15) Sagara, Y.; Kato, T. Angew. Chem. Int. Edit. 2008, 47, 5175.doi 10.1002/ange.200800164
-
[16]
(16) Yamaguchi, S.; Shirasaka, T.; Akiyama, S.; Tamao, K. J. Am. Chem. Soc. 2002, 124, 8816. doi: 10.1021/ja026689k
-
[17]
(17) Zhang, Z. L.; Yao, D. D.; Zhou, T. L.; Zhang, H. Y.; Wang, Y.Chem. Commun. 2011, 47, 7782. doi: 10.1039/c1cc11882j
-
[18]
(18) Mizoshita, N.; Tani, T.; Inagaki, S. Adv. Mater. 2012, 24, 3350. doi: 10.1002/adma.201201064
-
[19]
(19) Kunzelman, J.; Kinami, M.; Crenshaw, B. R.; Protasiewicz, J.D.; Weder, C. Adv. Mater. 2008, 20, 119. doi: 10.1002/adma.200701772
-
[20]
(20) Sagara, Y.; Mutai, T.; Yoshikawa, I.; Araki, K. J. Am. Chem. Soc. 2007, 129, 1520. doi: 10.1021/ja0677362
-
[21]
(21) Zhao, Y. F.; Gao, H. Z.; Fan, Y.; Zhou, T. L.; Su, Z. M.; Liu, Y.; Wang, Y. Adv. Mater. 2009, 21, 3165. doi: 10.1002/adma.200803432
-
[22]
(22) Pucci, A.; Ruggeri, G. J. Mater. Chem. 2011, 21, 8282. doi: 10.1039/C0JM03653F
-
[23]
(23) Zhang, J. B.; Chen, J. L.; Xu, B.; Wang, L. J.; Ma, S. Q.; Dong, Y. J.; Tian, W. J. Chem. Commun. 2013, 49, 3878.
-
[24]
(24) Xue, P. C.; Chen, P.; Jia, J. H.; Xu, Q. X.; Sun, J. B.; Yao, B.Q.; Zhang, Z. Q.; Lu, R. Chem. Commun. 2014, 50, 2569. doi: 10.1039/C3CC49208G
-
[25]
(25) Xue, P. C.; Lu, R.; Jia, J. H.; Takahuji, M.; Ihara, H. Chem. Eur. J. 2012, 18, 3549. doi: 10.1002/chem.201103566
-
[26]
(26) Dou, C. D.; Han, L.; Zhao, S. S.; Zhang, H. Y.; Wang, Y.J. Phys. Chem. Lett. 2011, 2, 666. doi: 10.1021/jz200140c
-
[27]
(27) Varghese, S.; Das, S. J. Phys. Chem. Lett. 2011, 2, 863. doi: 10.1021/jz200099p
-
[28]
(28) Zhang, Y.; Wang, K.; Zhuang, G. L.; Xie, Z. Q.; Zhang, C.; Cao, F.; Pan, G.; Chen, H. F.; Zou, B.; Ma, Y. Chem. Eur. J.2015, 21, 2474. doi: 10.1002/chem.201405348
-
[29]
(29) Zhang, H. Y.; Zhang, Z. L.; Ye, K. Q.; Zhang, J. Y.; Wang, Y.Adv. Mater. 2006, 18, 2369. doi: 10.1002/adma.200600704
-
[30]
(30) Wei, R. R.; Song, P. S.; Tong, A. J. J. Phys. Chem. C 2013, 117, 3467. doi: 10.1021/jp311020w
-
[31]
(31) Mutai, T.; Satou, H.; Araki, K. Nat. Mater. 2005, 4, 685. doi: 10.1038/nmat1454
-
[32]
(32) Anthony, S. P. ChemPlusChem 2012, 77, 518. doi: 10.1002/cplu.201200073
-
[33]
(33) Zhang, X. Q.; Chi, Z. G.; Xu, B. J.; Chen, C. J.; Zhou, X.; Zhang, Y.; Liu, S.W.; Xu, J. R. J. Mater. Chem. 2012, 22, 18505. doi: 10.1039/C2JM33140C
-
[34]
(34) Ouyang, M.; Yu, C. H.; Zhang, Y. J.; Hu, B.; Lü , X. J.; Sun, J.W.; Zhang, C. Acta Phys. -Chim. Sin. 2012, 28, 2944. [欧阳密, 俞春辉, 张玉建, 胡彬, 吕晓静, 孙璟玮, 张诚. 物理化学学报, 2012, 28, 2944.] doi: 10.3866/PKU.WHXB201208012
-
[35]
(35) Zhang, Y. J.; Zhuang, G. L.; Ouyang, M.; Hu, B.; Song, Q. B.; Sun, J.W.; Zhang, C.; Gu, C.; Xu, Y. X.; Ma, Y. G. Dyes Pigments 2013, 98, 486. doi: 10.1016/j.dyepig.2013.03.017
-
[36]
(36) Song, Q. B.; Wang, Y. S.; Zhang, Y. J.; Sun, J.W.; Zhang, C.New J. Chem. 2015, 39, 659. doi: 10.1039/C4NJ01492H
-
[37]
(37) Li, H. Y.; Zhang, X. Q.; Chi, Z. G.; Xu, B. J.; Zhou, W.; Liu, S.W.; Zhang, Y.; Xu, J. R. Org. Lett. 2011, 13, 556. doi: 10.1021/ol102872x
-
[38]
(38) Zhang, Y. J.; Sun, J.W.; Zhuang, G. L.; Ouyang, M.; Yu, Z.W.; Cao, F.; Pan, G. X.; Tang, P. S.; Zhang, C.; Ma, Y. G.J. Mater. Chem. C 2014, 2, 195. doi: 10.1039/C3TC31416B
-
[39]
(39) Bernard, V. Molecular Fluorescence: Principles and Applications; WCH:Weinheim, Germany, 2001; p 54.
-
[40]
(40) Yamaguchi, S.; Shirasaka, T.; Akiyama, S.; Tamao, K. J. Am. Chem. Soc. 2002, 124, 8816. doi: 10.1021/ja026689k
-
[41]
(41) Sun, H. T.; Tian, X. H.; Yuan, Y. Z.; Sun, J. Y.; Sun, Z. R.; Zhuo, X. L. Acta Phys. -Chim. Sin. 2011, 27, 1847. [孙海涛, 田晓慧, 元以中, 孙金煜, 孙真荣, 卓小玲. 物理化学学报, 2011, 27, 1847.] doi: 10.1039/C3TC31416B
-
[1]
-
-
[1]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[2]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[3]
Yan ZHAO , Xiaokang JIANG , Zhonghui LI , Jiaxu WANG , Hengwei ZHOU , Hai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242
-
[4]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[5]
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
-
[6]
Xinyu Liu , Weiran Hu , Zhengkai Li , Wei Ji , Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021
-
[7]
Yang YANG , Pengcheng LI , Zhan SHU , Nengrong TU , Zonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440
-
[8]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[9]
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
-
[10]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[11]
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
-
[12]
Zishuo Yi , Peng Liu , Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079
-
[13]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[14]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[15]
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
-
[16]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[17]
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
-
[18]
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
-
[19]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[20]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(228)
- HTML views(6)