Citation: CHEN Cheng-Cheng, ZHANG Ning, LIU Yong-Chang, WANG Yi-Jing, CHEN Jun. In-situ Preparation of Na2Ti3O7 Nanosheets as High-Performance Anodes for Sodium Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 349-355. doi: 10.3866/PKU.WHXB201512073
-
We report on the in-situ preparation of Na2Ti3O7 nanosheets and their application as highperformance anode material for sodium ion batteries. Nanosheets with interconnected micro-nano architectures are prepared by simply engraving commercial titanium foils. Furthermore, the foils can be used directly as electrodes without redundant conductive additives or binders. The electrode material exhibits excellent electrochemical performance with reversible capacity of 175 mAh·g-1 at 50 mA·g-1 and 120 mAh·g-1 at 2000 mA·g-1 after 3000 cycles (capacity retention of 96.5%). The superior electrochemical performance of Na2Ti3O7 nanosheets results from the short ion/electron diffusion pathway of the twodimensional architecture and the good conductive capability of the binder-free structure. The anode of the binder-free Na2Ti3O7 nanosheets effectively overcomes poor ion/electron conductivity, the main drawback of Na2Ti3O7 electrodes, and is promising for rechargeable sodium ion batteries.
-
Keywords:
- Na2Ti3O7,
- Nanosheet,
- Binder-free,
- Anode material,
- Sodium ion battery
-
-
[1]
(1) Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Nano Lett. 2013, 13, 5480. doi: 10.1021/nl403053v
-
[2]
(2) Duan, W. C.; Zhu, Z. Q.; Li, H.; Hu, Z.; Zhang, K.; Cheng, F. Y.; Chen, J. J. Mater. Chem. A 2014, 2, 8668.
-
[3]
(3) Zheng, J. Y.; Wang, R.; Li, H. Acta Phys. -Chim. Sin. 2014, 30, 1855. [郑杰允, 汪锐, 李泓. 物理化学学报, 2014, 30, 1855.] doi: 10.3866/PKU.WHXB201407151
-
[4]
(4) Tang, Y.; Zhang, Y.; Deng, J.; Wei, J.; Tam, H. L.; Chandran, B. K.; Dong, Z.; Chen, Z.; Chen, X. D. Adv. Mater. 2014, 26, 6111. doi: 10.1002/adma.201402000
-
[5]
(5) Huang, Z. L.; Wang, L. P.; Mou, C. X.; Li, J. Z. Acta Phys. -Chim. Sin. 2014, 30 (10), 1787. [黄宗令, 王丽平, 牟成旭, 李晶泽. 物理化学学报, 2014, 30 (10), 1787.] doi: 10.3866/PKU.WHXB201408052
-
[6]
(6) Mao, J. F.; Luo, C.; Gao, T.; Fan, X. L.; Wang, C. S. J. Mater. Chem. A 2015, 3, 10378. doi: 10.1039/C5TA01007A
-
[7]
(7) Xu, J.; Yang, D. Z.; Liao, X. Z.; He, Y. S.; Ma, Z. F. Acta Phys. -Chim. Sin. 2015, 31 (5), 913. [许静, 杨德志, 廖小珍, 何雨石, 马紫峰. 物理化学学报, 2015, 31 (5), 913.] doi: 10.3866/PKU.WHXB201503162
-
[8]
(8) Hu, Z.; Wang, L.; Zhang, K.; Wang, J.; Cheng, F.; Tao, Z.; Chen, J. Angew. Chem. Int. Edit. 2014, 53, 12794. doi: 10.1002/anie.201407898
-
[9]
(9) Li, H.; Wu, C.; Wu, F.; Bai, Y. Acta Chim. Sin. 2014, 72, 21. [李慧, 吴川, 吴峰, 白莹. 化学学报, 2014, 72, 21.] doi: 10.6023/A13080830
-
[10]
(10) Zhu, G. N.; Wang, Y. G.; Xia, Y. Y. Energy Environ. Sci. 2012, 5, 6652. doi: 10.1039/c2ee03410g
-
[11]
(11) Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, J. M.; Palacín, M. R. Chem. Mater. 2011, 23, 4109.
-
[12]
(12) Zhang, Y.; Guo, L.; Yang, S. Chem. Commun. 2014, 50, 14029. doi: 10.1039/C4CC06451H
-
[13]
(13) Pan, H.; Lu, X.; Yu, X.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L. Q. Adv. Energy Mater. 2013, 3, 1186. doi: 10.1002/aenm.v3.9
-
[14]
(14) Yan, Z.; Liu, L.; Shu, H.; Yang, X.; Wang, H.; Tan, J.; Zhou, Q.; Huang, Z.; Wang, X. J. Power Sources 2015, 274, 8. doi: 10.1016/j.jpowsour.2014.10.045
-
[15]
(15) Wang, W.; Yu, C.; Lin, Z.; Hou, J.; Zhu, H.; Jiao, S. Nanoscale 2013, 5, 594. doi: 10.1039/C2NR32661B
-
[16]
(16) Zhang, C. L.; Jiang, W. J.; Zhang, J.; Qi, L. Acta Phys. -Chim. Sin. 2007, 23 (Supp), 31. [张春玲, 江卫军, 张晶, 其鲁. 物理化学学报, 2007, 23 (Supp), 31.] doi: 10.3866/PKU.WHXB2007Supp08
-
[17]
(17) Cao, L. Y.; Diao, P.; Liu, Z. F. Acta Phys. -Chim. Sin. 2002, 18 (12), 1062. [曹林有, 刁鹏, 刘忠范. 物理化学学报, 2002, 18 (12), 1062.] doi: 10.3866/PKU.WHXB20021202
-
[18]
(18) Zhang, K.; Han, X. P.; Hu, Z.; Zhang, X. L.; Tao, Z. L.; Chen, J. Chem. Soc. Rev. 2015, 44, 699. doi: 10.1039/C4CS00218K
-
[19]
(19) Wang, Y. Q.; Gu, L.; Guo, Y. G.; Li, H.; He, X. Q.; Tsukimoto, S.; Ikuhara, Y.; Wan, L. J. J. Am. Chem. Soc. 2012, 134, 7874. doi: 10.1021/ja301266w
-
[20]
(20) Guo, Y. J.; Chen, H.; Qi, L. Acta Phys. -Chim. Sin. 2007, 23 (Supp), 89. [郭营军, 晨辉, 其鲁. 物理化学学报, 2007, 23 (Supp), 89.] doi: 10.3866/PKU.WHXB2007Supp17
-
[21]
(21) Wang, S.; Wang, L.; Zhang, K.; Zhu, Z.; Tao, Z.; Chen, J. Nano Letters 2013, 13, 4404. doi: 10.1021/nl402239p
-
[22]
(22) Ye, F.; Wang, L.; Lian, F.; He, X. M.; Tian, G. Y.; Ouyang, M. G. Chem. Ind. Eng. Prog. 2013, 32, 1789. [叶飞, 王莉, 连芳, 何向明, 田光宇, 欧阳明高. 化工进展, 2013, 32, 1789.]
-
[23]
(23) Liu, H.; Yang, D.; Waclawik, E. R.; Ke, X.; Zheng, Z.; Zhu, H.; Frost, R. L. J. Raman Spectrosc. 2010, 41, 1792.
-
[24]
(24) Yuan, S.; Huang, X. L.; Ma, D. L.; Wang, H. G.; Meng, F. Z.; Zhang, X. B. Adv. Mater. 2014, 26, 2273.
-
[25]
(25) Liu, J.; Song, K.; Aken, P. A. V.; Maier, J.; Yu, Y. Nano Lett. 2014, 14, 2597. doi: 10.1021/nl5004174
-
[26]
(26) Hu, Z.; Zhu, Z.; Cheng, F.; Zhang, K.; Wang, J.; Chen, C.; Chen, J. Energy Environ. Sci. 2015, 8, 1309.
-
[27]
(27) Zhang, K.; Hu, Z.; Tao, Z.; Chen, J. Sci. China Mater. 2014, 57, 42. doi: 10.1007/s40843-014-0006-0
-
[28]
(28) Gao, P.; Jia, H.; Yang, J.; Nuli, Y.; Wang, J.; Chen, J. Phys. Chem. Chem. Phys. 2011, 13, 20108. doi: 10.1039/c1cp23062j
-
[29]
(29) Chen, C. C.; Huang, Y. N.; Zhang, H.; Wang, X. F.; Li, G. Y.; Wang, Y. J.; Jiao, L. F.; Yuan, H. T. J. Power Sources 2015, 278, 693. doi: 10.1016/j.jpowsour.2014.12.075
-
[30]
(30) Zhang, N.; Liu, Y. C.; Chen, C. C.; Tao, Z. L.; Chen, J. Chin. J. Inorg. Chem. 2015, 31, 1739. [张宁, 刘永畅, 陈程成, 陶占良, 陈军. 无机化学学报, 2015, 31, 1739.]
-
[31]
(31) Shaju, K. M.; SubbaRao, G. V.; Chowdari, B. V. R. Electrochim. Acta 2003, 48, 2691. doi: 10.1016/S0013-4686(03)00317-7
-
[32]
(32) Wang, L.; Zhang, K.; Hu, Z.; Duan, W.; Cheng, F.; Chen, J. Nano Res. 2013, 7, 199.
-
[33]
(33) Lu, Y.; Zhang, S.; Li, Y.; Xue, L.; Xu, G.; Zhang, X. J. Power Sources 2014, 247, 770. doi: 10.1016/j.jpowsour.2013.09.018
-
[34]
(34) Zhou, G.; Li, F.; Cheng, H. M. Energy Environ. Sci. 2014, 7, 1307. doi: 10.1039/C3EE43182G
-
[1]
-
-
[1]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[2]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[3]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[4]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[5]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[6]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[7]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[8]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[9]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[10]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[11]
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
-
[12]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[13]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[14]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[15]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[16]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[17]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[18]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[19]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[20]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(346)
- HTML views(20)