Citation: WANG Hui-Yong, LI Hong-Pei, CUI Guo-Kai, LI Zhi-Yong, WANG Jian-Ji. Recent Progress in Self-Assembly of Ionic Liquid Surfactants and Its Regulation and Control in Aqueous Solutions[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 249-260. doi: 10.3866/PKU.WHXB201512042 shu

Recent Progress in Self-Assembly of Ionic Liquid Surfactants and Its Regulation and Control in Aqueous Solutions

  • Corresponding author: WANG Jian-Ji, 
  • Received Date: 14 October 2015
    Available Online: 4 December 2015

    Fund Project: 国家自然科学基金(21273062,21133009) (21273062,21133009)河南省教育厅科学技术研究重点项目(15A150003,14A150038)资助 (15A150003,14A150038)

  • Application of ionic liquid surfactants in chemical synthesis, materials preparation, and environmental pollution control is closely dependent on their self-assembly behavior and aggregate structure in aqueous solution. Thus, the study of the aggregation behavior of ionic liquid surfactants in water is of significant importance. In this review, we focus our attention on the recent progress made in the regulation and control of the self-assembly behavior of ionic liquid surfactants and related microstructure of their aggregates in aqueous solutions by alkyl chain length, cationic structure, anionic type of the ionic liquid surfactants, addition of inorganic salt and organic solvent, and environmental factors such as temperature, solution pH, and light. Some regularities have been summarized for the regulation and control of the self-assembly behavior of ionic liquid surfactants, and the challenges to future development in this field are explained.
  • 加载中
    1. [1]

      (1) Welton, T. Chem. Rev. 1996, 99, 2071.

    2. [2]

      (2) Seddon, K. R. J. Chem. Tech. Biotechnol. 1997, 68, 351.

    3. [3]

      (3) Wasserschein, P.; Welton, T. Ionic Liquids in Syntheses; VCH-Wiley: Weinhein, 2003

    4. [4]

      (4) Rantwijk, F.; Lau, R. M.; Sheldon, R. A. Trends Biotechnol. 2003, 21, 131. doi: 10.1016/S0167-7799(03)00008-8

    5. [5]

      (5) Jain, N.; Kumar, A.; Chauhan, S.; Chauhan, S. M. S. Tetrahedron 2005, 61, 1015. doi: 10.1016/j.tet.2004.10.070

    6. [6]

      (6) Buzzeo, M. C.; Evans, R. G.; Compton, R. G. ChemPhysChem 2004, 5, 1106.

    7. [7]

      (7) Endres, F.; Abedin, S. Z. E. Phys. Chem. Chem. Phys. 2006, 8, 2101. doi: 10.1039/b600519p

    8. [8]

      (8) Liu, J.; Jonsson, J. A.; Jing, G. Trends. Anal. Chem. 2005, 24, 20. doi: 10.1016/j.trac.2004.09.005

    9. [9]

      (9) Zhao, H.; Xia, S.; Ma, P. J. Chem. Technol. Biotechnol. 2005, 80, 1089

    10. [10]

      (10) Zhang, S.; Sun, J.; Zhang, X.; Xin, J.; Miao, Q.; Wang, J. Chem. Soc. Rev. 2014, 43, 7838. doi: 10.1039/C3CS60409H

    11. [11]

      (11) Chen, S.; Zhang, S.; Liu, X.; Wang, J.; Wang, J.; Dong, K.; Sun, J.; Xu, B. Phys. Chem. Chem. Phys. 2014, 16, 5893.

    12. [12]

      (12) Hayes, R.; Warr, G. G.; Atkin, R. Chem. Rev. 2015, 115, 6357. doi: 10.1021/cr500411q

    13. [13]

      (13) Dupont, J. Accounts Chem. Res. 2011, 44, 1223. doi: 10.1021/ar2000937

    14. [14]

      (14) Neto, B. A. D.; Meurer, E. C.; Galaverna, R.; Bythell, B. J.; Dupont, J.; Cooks, R. G.; Eberlin, M. N. J. Phys. Chem. Lett. 2012, 3, 3435. doi: 10.1021/jz301608c

    15. [15]

      (15) Marcus, Y.; Hefter, G. Chem. Rev. 2006, 106, 4585. doi: 10.1021/cr040087x

    16. [16]

      (16) Visser, A.; Swaltowski, R. P.; Reichert, R. M.; Mayton, R.; Sheff, S.; Wierzbicki, A.; Davis, J. H.; Rogers, R. D. Environ. Sci. Technol. 2002, 36, 252.

    17. [17]

      (17) Huddleston, J. G.; Visser, A. E.; Reichert, M. W.; Willauer, H. D.; Broker, G. A.; Rogers, R. D. Green Chem. 2001, 3, 156. doi: 10.1039/b103275p

    18. [18]

      (18) Bowers, J. P.; Butts, C. J.; Martin, P. C.; Vergara-Gutierrez, M. Langmuir 2004, 20, 2191. doi: 10.1021/la035940m

    19. [19]

      (19) Miskolczy, Z.; Sebok-Nagy, K.; Biczok, L.; Gokturk, S. Chem. Phys. Lett. 2004, 400, 296. doi: 10.1016/j.cplett.2004.10.127

    20. [20]

      (20) Vanyur, R.; Biczok, L.; Miskolczy, Z. Colloids Surf. A: Physicochem. Eng. Asp. 2007, 299, 256. doi: 10.1016/j.colsurfa.2006.11.049

    21. [21]

      (21) Bai, G.; Lopes, A.; Bastos, M. J. Chem. Thermodyn. 2008, 40, 1509. doi: 10.1016/j.jct.2008.05.016

    22. [22]

      (22) Inoue, T.; Ebina, H.; Dong, B.; Zheng, L. J. Colloid Interface Sci. 2007, 314, 236. doi: 10.1016/j.jcis.2007.05.052

    23. [23]

      (23) Łuczak, J.; Hupka, J.; Thoeming, J.; Jungnickel, C. International Scientific Conference, Surfactants and Dispersed Systems in Theory and Practice; PALMA Press: Wrocław/ Ksiaz Castle, 2007.

    24. [24]

      (24) Klevens, H. B. J. Am. Oil Chem. Soc. 1953, 30, 74. doi: 10.1007/BF02635002

    25. [25]

      (25) Baltazar, Q. Q.; Chandawalla, J.; Sawyer, K.; Anderson, J. L. Colloids Surf. A: Physicochem. Eng. Asp. 2007, 302, 150. doi: 10.1016/j.colsurfa.2007.02.012

    26. [26]

      (26) Wang, J.; Wang, H.; Zhang, S.; Zhang, H.; Zhao, Y. J. Phys. Chem. B 2007, 111, 6181. doi: 10.1021/jp068798h

    27. [27]

      (27) Stepnowski, P.; Nichthauser, J.; Mrozik, W.; Buszewski, B. Anal. Bioanal. Chem. 2006, 385, 1483. doi: 10.1007/s00216-006-0577-0

    28. [28]

      (28) Blesic, M.; Marques, M. H.; Plechkova, N. V.; Seddon, K. R.; Rebelo, L. P. N.; Lopes, A. Green Chem. 2007, 9, 48.

    29. [29]

      (29) Jungnickel, C.; Łuczak, J.; Ranke, J.; Fernández, J. F.; Müller, A.; Thöing, J. Colloids Surf. A: Physicochem. Eng. Asp. 2008, 316, 278. doi: 10.1016/j.colsurfa.2007.09.020

    30. [30]

      (30) Huibers, P. D. T.; Lobanov, V. S.; Katritzky, A. R.; Shah, D. O.; Karelson, M. J. Colloid Interface Sci. 1997, 187,113. doi: 10.1006/jcis.1996.4680

    31. [31]

      (31) Baker, G. A.; Pandey, S.; Pandey, S.; Baker, S. N. Analyst 2004, 12, 890.

    32. [32]

      (32) Łuczaka, J.; Hupkaa, J; Thöing, J.; Jungnickel, C. Colloids Surf. A: Physicochem. Eng. Asp. 2008, 329, 125. doi: 10.1016/j.colsurfa.2008.07.012

    33. [33]

      (33) Garcia, M. T.; Ribosa, I.; Perez, L.; Manresa, A.; Comelles, F. Langmuir 2013, 29, 2536. doi: 10.1021/la304752e

    34. [34]

      (34) Wang, X. Q.; Yu, L.; Jiao, J. J.; Zhang, H. N.; Wang, R.; Chen, H. J. Mol. Liq. 2012, 173, 103. doi: 10.1016/j.molliq.2012.06.023

    35. [35]

      (35) Brady, J. E.; Evans, D. F.; Warr, G. G.; Grieser, F.; Niham, B. W. J. Phys. Chem. 1986, 90, 1853. doi: 10.1021/j100400a024

    36. [36]

      (36) Wang, H.; Wang, J.; Zhang, S.; Xuan, X. J. Phys. Chem. B 2008, 112, 16682. doi: 10.1021/jp8069089

    37. [37]

      (37) Blesic, M.; Lopes, A.; Melo, E.; Petrovski, Z.; Plechkova, N. V.; Canongia Lopes, J. N.; Seddon, K. R.; Rebelo, L. P. N. J. Phys. Chem. B 2008, 112, 8645. doi: 10.1021/jp802179j

    38. [38]

      (38) Zana, R. Langmuir 1996, 12, 1208. doi: 10.1021/la950691q

    39. [39]

      (39) Tokuda, H.; Hayamizu, K.; Ishii, K.; Suan, M. D. A. B. H.; Watanabe, M. J. Phys. Chem. B 2005, 109, 6103. doi: 10.1021/jp044626d

    40. [40]

      (40) Ao, M.; Huang, P.; Xu, G.; Yang, X.; Wang, Y. Colloid Polym. Sci. 2009, 287, 395. doi: 10.1007/s00396-008-1976-x

    41. [41]

      (41) Bhadani, A.; Singh, S. Langmuir 2011, 27, 14033. doi: 10.1021/la202201r

    42. [42]

      (42) Kamboj, R.; Singh, S.; Bhadani, A.; Kataria, H.; Kaur, G. Langmuir 2012, 28, 11969. doi: 10.1021/la300920p

    43. [43]

      (43) Palchowdhury, S.; Bhargava, B. L. Phys. Chem. Chem. Phys. 2015, 17, 11627. doi: 10.1039/C5CP00873E

    44. [44]

      (44) Zhang, S.; Yan, H.; Zhao, M.; Zheng, L. J. Colloid Interface Sci. 2012, 372, 52. doi: 10.1016/j.jcis.2012.01.040

    45. [45]

      (45) Jiao, J.; Han, B.; Lin, M.; Cheng, N.; Yu, L.; Liu, M. J. Colloid Interface Sci. 2013, 412, 24. doi: 10.1016/j.jcis.2013.09.001

    46. [46]

      (46) Blesic, M.; Swadźba-Kwaśny, M.; Holbrey, J. D.; Lopes, J. C.; Seddonab, K. R.; Rebelo, L. P. N. Phys. Chem. Chem. Phys. 2009, 11, 4260. doi: 10.1039/b822341f

    47. [47]

      (47) Luo, G.; Qi, X.; Han, C.; Liu, C.; Gui, J. J. Surfact. Deterg. 2013, 16, 531. doi: 10.1007/s11743-012-1431-3

    48. [48]

      (48) Sepúlveda, L.; Cortés, J. J. Phys. Chem. 1985, 89, 5322. doi: 10.1021/j100270a040

    49. [49]

      (49) Marcus, Y. J. Chem. Soc. Faraday Trans. 1991, 87, 2995. doi: 10.1039/ft9918702995

    50. [50]

      (50) Bunton, C. A.; Cowell, C. J. Colloid Interface Sci. 1988, 122, 154. doi: 10.1016/0021-9797(88)90298-6

    51. [51]

      (51) Abdel-Rahem, R. Adv. Colloid Interface Sci. 2008, 141, 24. doi: 10.1016/j.cis.2008.02.002

    52. [52]

      (52) Shaw, D. J. Introduction to Colloid and Surface Chemistry; Butterworth, Heinemann: Oxford, 1992.

    53. [53]

      (53) Dong, B.; Li, N.; Zheng, L.; Yu, L.; Inoue, T. Langmuir 2007, 23, 4178.

    54. [54]

      (54) Dong, B.; Zhao, X.; Zheng, L.; Zhang, J.; Li, N.; Inoue, T. Colloids Surf. A: Physicochem. Eng. Asp. 2008, 317, 666. doi: 10.1016/j.colsurfa.2007.12.001

    55. [55]

      (55) Vaghela, N. M.; Sastry, N. V.; Aswal, V. K. Colloids Surf. A: Physicochem. Eng. Asp. 2011, 373, 101. doi: 10.1016/j.colsurfa.2010.10.031

    56. [56]

      (56) Ghasemian, E.; Najafi, M.; Rafati, A. A.; Felegari, Z. J. Chem. Thermodyn. 2010, 42, 962. doi: 10.1016/j.jct.2010.03.007

    57. [57]

      (57) Golabiazar, R.; Sadeghi, R. J. Chem. Thermodyn. 2014, 76, 29. doi: 10.1016/j.jct.2014.03.001

    58. [58]

      (58) Larsen, J. W.; Magidl, L. J. J. Am. Chem. Soc. 1974, 96, 5774. doi: 10.1021/ja00825a013

    59. [59]

      (59) Wang, H.; Feng, Q.; Wang, J.; Zhang, H. J. Phys. Chem. B 2010, 114, 1380. doi: 10.1021/jp910903s

    60. [60]

      (60) Anacker, E. W.; Ghose, H. M. J. Am. Chem. Soc. 1968, 90, 3161. doi: 10.1021/ja01014a034

    61. [61]

      (61) Freire, M. G.; Carvalho, P. J.; Silva, A. M. S. J. Phys. Chem. B 2009, 113, 202. doi: 10.1021/jp8080035

    62. [62]

      (62) Sadeghi, R.; Golabiazar, R. J. Mol. Liq. 2014, 197, 176. doi: 10.1016/j.molliq.2014.04.034

    63. [63]

      (63) Gu, Y.; Shi, L.; Cheng, X.; Lu, F.; Zheng, L. Langmuir 2013, 29, 6213. doi: 10.1021/la400497r

    64. [64]

      (64) Armstrong, D. W.; Henry, S. J. J. Liq. Chromatogr. 1980, 3, 657. doi: 10.1080/01483918008060181

    65. [65]

      (65) Berthod, A.; García-álvarez-Coque, C. Micellar Liquid Chromatography; Marcel Dekker: New York, 2000.

    66. [66]

      (66) Esteve-Romero, J.; Carda-Broch, S.; Gil-Agustí, M.; Capella-Peiró, M. E, Bose, D. Trends Anal. Chem. 2005, 24, 75.

    67. [67]

      (67) Armstrong, D. W. Sep. Purif. Methods 1985, 14, 213 doi: 10.1080/03602548508068421

    68. [68]

      (68) Thomas, D. P.; Foley, J. P. J. Chromatogr. A 2007, 1149, 282 doi: 10.1016/j.chroma.2007.03.045

    69. [69]

      (69) Ruiz-ángel, M. J.; Torres-Lapasió, J. R.; García-álvarez-Coque, M. C. Anal. Chem. 2008, 80, 9705. doi: 10.1021/ac801685p

    70. [70]

      (70) Pino, V.; Yao, C.; Anderson, J. L. J. Colloid Interface Sci. 2009, 333, 548. doi: 10.1016/j.jcis.2009.02.037

    71. [71]

      (71) Wang, J.; Zhang, L.; Wang, H.; Wu, C. J. Phys. Chem. B 2012, 115, 4955.

    72. [72]

      (72) Rodríguez, A.; Graciani, M. M.; Moyá, M. L. Langmuir 2008, 24, 12785. doi: 10.1021/la802320s

    73. [73]

      (73) Rodríguez, A.; Graciani, M. M.; Moyá, M. L. J. Colloid Interface Sci. 2009, 338, 207. doi: 10.1016/j.jcis.2009.06.005

    74. [74]

      (74) Rodriguez, J. R.; Gonzalez-Perez, A.; Del Castillo, J. L.; Czapkiewicz, J. J. Colloid Interface Sci. 2005, 250, 438.

    75. [75]

      (75) Chen, L.; Lin, S.; Huang, C.; Chen, E. Colloids Surf. A: Physicochem. Eng. Asp. 1998, 135, 175. doi: 10.1016/S0927-7757(97)00238-0

    76. [76]

      (76) Mehta, S. K.; Bhasin, K. K.; Chauhan, R.; Dham, S. Colloids Surf. A: Physicochem. Eng. Asp. 2005, 255, 153. doi: 10.1016/j.colsurfa.2004.12.038

    77. [77]

      (77) Muller, N. Langmuir 1993, 9, 96. doi: 10.1021/la00025a022

    78. [78]

      (78) Shi, L.; Li, N.; Yan, H. Langmuir 2011, 27, 1618. doi: 10.1021/la104719v

    79. [79]

      (79) Goodchild, I.; Collier, L.; Millar, S. L.; Prokěs, I.; Lord, J. C. D.; Butts, C. P. B.; Bowers, J.; Webster, J. R. P.; Heenan, R. K. J. Colloid Interface Sci. 2007, 307, 455. doi: 10.1016/j.jcis.2006.11.034

    80. [80]

      (80) Zhao, Y.; Gao, S.; Wang, J.; Tang, J. J. Phys. Chem. B 2008, 112, 2031.

    81. [81]

      (81) Bhargava, B. L.; Klein, M. L. J. Phys. Chem. A 2009, 113, 1898. doi: 10.1021/jp8068865

    82. [82]

      (82) Bhargava, B. L.; Klein, M. L. J. Phys. Chem. B 2009, 113, 9499. doi: 10.1021/jp903560y

    83. [83]

      (83) Sharma, R.; Mahajan, R. K. RSC Adv. 2014, 4, 748. doi: 10.1039/C3RA42228C

    84. [84]

      (84) Singh, K.; Marangoni, D. G.; Quinn, J. G. J. Colloid Interface Sci. 2009, 335, 105. doi: 10.1016/j.jcis.2009.03.075

    85. [85]

      (85) Yuan, J.; Bai, X.; Zhao, M. Langmuir 2010, 26, 11726. doi: 10.1021/la101221z

    86. [86]

      (86) Rao, K. S.; Singh, T.; Kumar, A. Langmuir 2011, 27, 9261. doi: 10.1021/la201695a

    87. [87]

      (87) Rao, K. S.; Trivedi, T. J.; Kumar, A. J. Phys. Chem. B 2012, 116, 14363. doi: 10.1021/jp309717n

    88. [88]

      (88) Villa, C. C.; Moyano, F.; Ceolin, M.; Silber, J. J.; Falcone, R. D.; Correa, N. M. Chem. Eur. J. 2012, 18, 15598. doi: 10.1002/chem.201203246

    89. [89]

      (89) Rao, K. S.; Gehlot, P. S.; Trivedi, T. J.; Kumar, A. J. Colloid Interface Sci. 2014, 428, 267. doi: 10.1016/j.jcis.2014.04.062

    90. [90]

      (90) Chu, Z. L.; Dreiss, C. A.; Feng, Y. J. Chem. Soc. Rev. 2013, 42, 7174. doi: 10.1039/c3cs35490c

    91. [91]

      (91) Wang, H.; Zhang, L.; Wang, J.; Zhang, S. Chem. Commun. 2013, 49, 5222. doi: 10.1039/c3cc41908h

    92. [92]

      (92) Shi, L.; Wei, Y.; Sun, N.; Zheng, L. Chem. Commun. 2013, 49, 11388. doi: 10.1039/c3cc45550e

    93. [93]

      (93) Du, N.; Song, R.; Zhu, X.; Hou, W.; Li, H.; Zhang, R. Chem. Commun. 2014, 50, 10573.

    94. [94]

      (94) Figueira-González, M.; Francisco, V.; García-Río, L.; Marques, E. F.; Parajó, M.; Rodríguez-Dafonte, P. J. Phys. Chem. B 2013, 117, 2926. doi: 10.1021/jp3117962

    95. [95]

      (95) Rao, K. S.; Gehlot, P. S.; Gupta, H.; Drechsler, M.; Kumar, A. J. Phys. Chem. B 2015, 119, 4263. doi: 10.1021/jp512805e

    96. [96]

      (96) Wang, H.; Tan, B.; Wang, J.; Li, Z.; Zhang, S. Langmuir 2014, 30, 3971. doi: 10.1021/la500030k

    97. [97]

      (97) Wang, H.; Tan, B.; Zhang, H.; Wang, J. RSC Adv. 2015, 5, 65583. doi: 10.1039/C5RA12010A

    98. [98]

      (98) Yang, J.; Wang, H.; Wang, J.; Zhang, Y.; Guo, Z. Chem. Commun. 2014, 50, 14979. doi: 10.1039/C4CC04274C

    99. [99]

      (99) Bi, Y.; Wei, H.; Hu, Q.; Xu, W.; Gong, Y.; Yu, L. Langmuir 2015, 31, 3789. doi: 10.1021/acs.langmuir.5b00107

  • 加载中
    1. [1]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    4. [4]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    5. [5]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    6. [6]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    7. [7]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    8. [8]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    9. [9]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    10. [10]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    11. [11]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    12. [12]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    15. [15]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    17. [17]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    18. [18]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    19. [19]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    20. [20]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

Metrics
  • PDF Downloads(2)
  • Abstract views(470)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return