Citation:
WANG Hui-Yong, LI Hong-Pei, CUI Guo-Kai, LI Zhi-Yong, WANG Jian-Ji. Recent Progress in Self-Assembly of Ionic Liquid Surfactants and Its Regulation and Control in Aqueous Solutions[J]. Acta Physico-Chimica Sinica,
;2016, 32(1): 249-260.
doi:
10.3866/PKU.WHXB201512042
-
Application of ionic liquid surfactants in chemical synthesis, materials preparation, and environmental pollution control is closely dependent on their self-assembly behavior and aggregate structure in aqueous solution. Thus, the study of the aggregation behavior of ionic liquid surfactants in water is of significant importance. In this review, we focus our attention on the recent progress made in the regulation and control of the self-assembly behavior of ionic liquid surfactants and related microstructure of their aggregates in aqueous solutions by alkyl chain length, cationic structure, anionic type of the ionic liquid surfactants, addition of inorganic salt and organic solvent, and environmental factors such as temperature, solution pH, and light. Some regularities have been summarized for the regulation and control of the self-assembly behavior of ionic liquid surfactants, and the challenges to future development in this field are explained.
-
-
-
[1]
(1) Welton, T. Chem. Rev. 1996, 99, 2071.
-
[2]
(2) Seddon, K. R. J. Chem. Tech. Biotechnol. 1997, 68, 351.
-
[3]
(3) Wasserschein, P.; Welton, T. Ionic Liquids in Syntheses; VCH-Wiley: Weinhein, 2003
-
[4]
(4) Rantwijk, F.; Lau, R. M.; Sheldon, R. A. Trends Biotechnol. 2003, 21, 131. doi: 10.1016/S0167-7799(03)00008-8
-
[5]
(5) Jain, N.; Kumar, A.; Chauhan, S.; Chauhan, S. M. S. Tetrahedron 2005, 61, 1015. doi: 10.1016/j.tet.2004.10.070
-
[6]
(6) Buzzeo, M. C.; Evans, R. G.; Compton, R. G. ChemPhysChem 2004, 5, 1106.
-
[7]
(7) Endres, F.; Abedin, S. Z. E. Phys. Chem. Chem. Phys. 2006, 8, 2101. doi: 10.1039/b600519p
-
[8]
(8) Liu, J.; Jonsson, J. A.; Jing, G. Trends. Anal. Chem. 2005, 24, 20. doi: 10.1016/j.trac.2004.09.005
-
[9]
(9) Zhao, H.; Xia, S.; Ma, P. J. Chem. Technol. Biotechnol. 2005, 80, 1089
-
[10]
(10) Zhang, S.; Sun, J.; Zhang, X.; Xin, J.; Miao, Q.; Wang, J. Chem. Soc. Rev. 2014, 43, 7838. doi: 10.1039/C3CS60409H
-
[11]
(11) Chen, S.; Zhang, S.; Liu, X.; Wang, J.; Wang, J.; Dong, K.; Sun, J.; Xu, B. Phys. Chem. Chem. Phys. 2014, 16, 5893.
-
[12]
(12) Hayes, R.; Warr, G. G.; Atkin, R. Chem. Rev. 2015, 115, 6357. doi: 10.1021/cr500411q
-
[13]
(13) Dupont, J. Accounts Chem. Res. 2011, 44, 1223. doi: 10.1021/ar2000937
-
[14]
(14) Neto, B. A. D.; Meurer, E. C.; Galaverna, R.; Bythell, B. J.; Dupont, J.; Cooks, R. G.; Eberlin, M. N. J. Phys. Chem. Lett. 2012, 3, 3435. doi: 10.1021/jz301608c
-
[15]
(15) Marcus, Y.; Hefter, G. Chem. Rev. 2006, 106, 4585. doi: 10.1021/cr040087x
-
[16]
(16) Visser, A.; Swaltowski, R. P.; Reichert, R. M.; Mayton, R.; Sheff, S.; Wierzbicki, A.; Davis, J. H.; Rogers, R. D. Environ. Sci. Technol. 2002, 36, 252.
-
[17]
(17) Huddleston, J. G.; Visser, A. E.; Reichert, M. W.; Willauer, H. D.; Broker, G. A.; Rogers, R. D. Green Chem. 2001, 3, 156. doi: 10.1039/b103275p
-
[18]
(18) Bowers, J. P.; Butts, C. J.; Martin, P. C.; Vergara-Gutierrez, M. Langmuir 2004, 20, 2191. doi: 10.1021/la035940m
-
[19]
(19) Miskolczy, Z.; Sebok-Nagy, K.; Biczok, L.; Gokturk, S. Chem. Phys. Lett. 2004, 400, 296. doi: 10.1016/j.cplett.2004.10.127
-
[20]
(20) Vanyur, R.; Biczok, L.; Miskolczy, Z. Colloids Surf. A: Physicochem. Eng. Asp. 2007, 299, 256. doi: 10.1016/j.colsurfa.2006.11.049
-
[21]
(21) Bai, G.; Lopes, A.; Bastos, M. J. Chem. Thermodyn. 2008, 40, 1509. doi: 10.1016/j.jct.2008.05.016
-
[22]
(22) Inoue, T.; Ebina, H.; Dong, B.; Zheng, L. J. Colloid Interface Sci. 2007, 314, 236. doi: 10.1016/j.jcis.2007.05.052
-
[23]
(23) Łuczak, J.; Hupka, J.; Thoeming, J.; Jungnickel, C. International Scientific Conference, Surfactants and Dispersed Systems in Theory and Practice; PALMA Press: Wrocław/ Ksiaz Castle, 2007.
-
[24]
(24) Klevens, H. B. J. Am. Oil Chem. Soc. 1953, 30, 74. doi: 10.1007/BF02635002
-
[25]
(25) Baltazar, Q. Q.; Chandawalla, J.; Sawyer, K.; Anderson, J. L. Colloids Surf. A: Physicochem. Eng. Asp. 2007, 302, 150. doi: 10.1016/j.colsurfa.2007.02.012
-
[26]
(26) Wang, J.; Wang, H.; Zhang, S.; Zhang, H.; Zhao, Y. J. Phys. Chem. B 2007, 111, 6181. doi: 10.1021/jp068798h
-
[27]
(27) Stepnowski, P.; Nichthauser, J.; Mrozik, W.; Buszewski, B. Anal. Bioanal. Chem. 2006, 385, 1483. doi: 10.1007/s00216-006-0577-0
-
[28]
(28) Blesic, M.; Marques, M. H.; Plechkova, N. V.; Seddon, K. R.; Rebelo, L. P. N.; Lopes, A. Green Chem. 2007, 9, 48.
-
[29]
(29) Jungnickel, C.; Łuczak, J.; Ranke, J.; Fernández, J. F.; Müller, A.; Thöing, J. Colloids Surf. A: Physicochem. Eng. Asp. 2008, 316, 278. doi: 10.1016/j.colsurfa.2007.09.020
-
[30]
(30) Huibers, P. D. T.; Lobanov, V. S.; Katritzky, A. R.; Shah, D. O.; Karelson, M. J. Colloid Interface Sci. 1997, 187,113. doi: 10.1006/jcis.1996.4680
-
[31]
(31) Baker, G. A.; Pandey, S.; Pandey, S.; Baker, S. N. Analyst 2004, 12, 890.
-
[32]
(32) Łuczaka, J.; Hupkaa, J; Thöing, J.; Jungnickel, C. Colloids Surf. A: Physicochem. Eng. Asp. 2008, 329, 125. doi: 10.1016/j.colsurfa.2008.07.012
-
[33]
(33) Garcia, M. T.; Ribosa, I.; Perez, L.; Manresa, A.; Comelles, F. Langmuir 2013, 29, 2536. doi: 10.1021/la304752e
-
[34]
(34) Wang, X. Q.; Yu, L.; Jiao, J. J.; Zhang, H. N.; Wang, R.; Chen, H. J. Mol. Liq. 2012, 173, 103. doi: 10.1016/j.molliq.2012.06.023
-
[35]
(35) Brady, J. E.; Evans, D. F.; Warr, G. G.; Grieser, F.; Niham, B. W. J. Phys. Chem. 1986, 90, 1853. doi: 10.1021/j100400a024
-
[36]
(36) Wang, H.; Wang, J.; Zhang, S.; Xuan, X. J. Phys. Chem. B 2008, 112, 16682. doi: 10.1021/jp8069089
-
[37]
(37) Blesic, M.; Lopes, A.; Melo, E.; Petrovski, Z.; Plechkova, N. V.; Canongia Lopes, J. N.; Seddon, K. R.; Rebelo, L. P. N. J. Phys. Chem. B 2008, 112, 8645. doi: 10.1021/jp802179j
-
[38]
(38) Zana, R. Langmuir 1996, 12, 1208. doi: 10.1021/la950691q
-
[39]
(39) Tokuda, H.; Hayamizu, K.; Ishii, K.; Suan, M. D. A. B. H.; Watanabe, M. J. Phys. Chem. B 2005, 109, 6103. doi: 10.1021/jp044626d
-
[40]
(40) Ao, M.; Huang, P.; Xu, G.; Yang, X.; Wang, Y. Colloid Polym. Sci. 2009, 287, 395. doi: 10.1007/s00396-008-1976-x
-
[41]
(41) Bhadani, A.; Singh, S. Langmuir 2011, 27, 14033. doi: 10.1021/la202201r
-
[42]
(42) Kamboj, R.; Singh, S.; Bhadani, A.; Kataria, H.; Kaur, G. Langmuir 2012, 28, 11969. doi: 10.1021/la300920p
-
[43]
(43) Palchowdhury, S.; Bhargava, B. L. Phys. Chem. Chem. Phys. 2015, 17, 11627. doi: 10.1039/C5CP00873E
-
[44]
(44) Zhang, S.; Yan, H.; Zhao, M.; Zheng, L. J. Colloid Interface Sci. 2012, 372, 52. doi: 10.1016/j.jcis.2012.01.040
-
[45]
(45) Jiao, J.; Han, B.; Lin, M.; Cheng, N.; Yu, L.; Liu, M. J. Colloid Interface Sci. 2013, 412, 24. doi: 10.1016/j.jcis.2013.09.001
-
[46]
(46) Blesic, M.; Swadźba-Kwaśny, M.; Holbrey, J. D.; Lopes, J. C.; Seddonab, K. R.; Rebelo, L. P. N. Phys. Chem. Chem. Phys. 2009, 11, 4260. doi: 10.1039/b822341f
-
[47]
(47) Luo, G.; Qi, X.; Han, C.; Liu, C.; Gui, J. J. Surfact. Deterg. 2013, 16, 531. doi: 10.1007/s11743-012-1431-3
-
[48]
(48) Sepúlveda, L.; Cortés, J. J. Phys. Chem. 1985, 89, 5322. doi: 10.1021/j100270a040
-
[49]
(49) Marcus, Y. J. Chem. Soc. Faraday Trans. 1991, 87, 2995. doi: 10.1039/ft9918702995
-
[50]
(50) Bunton, C. A.; Cowell, C. J. Colloid Interface Sci. 1988, 122, 154. doi: 10.1016/0021-9797(88)90298-6
-
[51]
(51) Abdel-Rahem, R. Adv. Colloid Interface Sci. 2008, 141, 24. doi: 10.1016/j.cis.2008.02.002
-
[52]
(52) Shaw, D. J. Introduction to Colloid and Surface Chemistry; Butterworth, Heinemann: Oxford, 1992.
-
[53]
(53) Dong, B.; Li, N.; Zheng, L.; Yu, L.; Inoue, T. Langmuir 2007, 23, 4178.
-
[54]
(54) Dong, B.; Zhao, X.; Zheng, L.; Zhang, J.; Li, N.; Inoue, T. Colloids Surf. A: Physicochem. Eng. Asp. 2008, 317, 666. doi: 10.1016/j.colsurfa.2007.12.001
-
[55]
(55) Vaghela, N. M.; Sastry, N. V.; Aswal, V. K. Colloids Surf. A: Physicochem. Eng. Asp. 2011, 373, 101. doi: 10.1016/j.colsurfa.2010.10.031
-
[56]
(56) Ghasemian, E.; Najafi, M.; Rafati, A. A.; Felegari, Z. J. Chem. Thermodyn. 2010, 42, 962. doi: 10.1016/j.jct.2010.03.007
-
[57]
(57) Golabiazar, R.; Sadeghi, R. J. Chem. Thermodyn. 2014, 76, 29. doi: 10.1016/j.jct.2014.03.001
-
[58]
(58) Larsen, J. W.; Magidl, L. J. J. Am. Chem. Soc. 1974, 96, 5774. doi: 10.1021/ja00825a013
-
[59]
(59) Wang, H.; Feng, Q.; Wang, J.; Zhang, H. J. Phys. Chem. B 2010, 114, 1380. doi: 10.1021/jp910903s
-
[60]
(60) Anacker, E. W.; Ghose, H. M. J. Am. Chem. Soc. 1968, 90, 3161. doi: 10.1021/ja01014a034
-
[61]
(61) Freire, M. G.; Carvalho, P. J.; Silva, A. M. S. J. Phys. Chem. B 2009, 113, 202. doi: 10.1021/jp8080035
-
[62]
(62) Sadeghi, R.; Golabiazar, R. J. Mol. Liq. 2014, 197, 176. doi: 10.1016/j.molliq.2014.04.034
-
[63]
(63) Gu, Y.; Shi, L.; Cheng, X.; Lu, F.; Zheng, L. Langmuir 2013, 29, 6213. doi: 10.1021/la400497r
-
[64]
(64) Armstrong, D. W.; Henry, S. J. J. Liq. Chromatogr. 1980, 3, 657. doi: 10.1080/01483918008060181
-
[65]
(65) Berthod, A.; García-álvarez-Coque, C. Micellar Liquid Chromatography; Marcel Dekker: New York, 2000.
-
[66]
(66) Esteve-Romero, J.; Carda-Broch, S.; Gil-Agustí, M.; Capella-Peiró, M. E, Bose, D. Trends Anal. Chem. 2005, 24, 75.
-
[67]
(67) Armstrong, D. W. Sep. Purif. Methods 1985, 14, 213 doi: 10.1080/03602548508068421
-
[68]
(68) Thomas, D. P.; Foley, J. P. J. Chromatogr. A 2007, 1149, 282 doi: 10.1016/j.chroma.2007.03.045
-
[69]
(69) Ruiz-ángel, M. J.; Torres-Lapasió, J. R.; García-álvarez-Coque, M. C. Anal. Chem. 2008, 80, 9705. doi: 10.1021/ac801685p
-
[70]
(70) Pino, V.; Yao, C.; Anderson, J. L. J. Colloid Interface Sci. 2009, 333, 548. doi: 10.1016/j.jcis.2009.02.037
-
[71]
(71) Wang, J.; Zhang, L.; Wang, H.; Wu, C. J. Phys. Chem. B 2012, 115, 4955.
-
[72]
(72) Rodríguez, A.; Graciani, M. M.; Moyá, M. L. Langmuir 2008, 24, 12785. doi: 10.1021/la802320s
-
[73]
(73) Rodríguez, A.; Graciani, M. M.; Moyá, M. L. J. Colloid Interface Sci. 2009, 338, 207. doi: 10.1016/j.jcis.2009.06.005
-
[74]
(74) Rodriguez, J. R.; Gonzalez-Perez, A.; Del Castillo, J. L.; Czapkiewicz, J. J. Colloid Interface Sci. 2005, 250, 438.
-
[75]
(75) Chen, L.; Lin, S.; Huang, C.; Chen, E. Colloids Surf. A: Physicochem. Eng. Asp. 1998, 135, 175. doi: 10.1016/S0927-7757(97)00238-0
-
[76]
(76) Mehta, S. K.; Bhasin, K. K.; Chauhan, R.; Dham, S. Colloids Surf. A: Physicochem. Eng. Asp. 2005, 255, 153. doi: 10.1016/j.colsurfa.2004.12.038
-
[77]
(77) Muller, N. Langmuir 1993, 9, 96. doi: 10.1021/la00025a022
-
[78]
(78) Shi, L.; Li, N.; Yan, H. Langmuir 2011, 27, 1618. doi: 10.1021/la104719v
-
[79]
(79) Goodchild, I.; Collier, L.; Millar, S. L.; Prokěs, I.; Lord, J. C. D.; Butts, C. P. B.; Bowers, J.; Webster, J. R. P.; Heenan, R. K. J. Colloid Interface Sci. 2007, 307, 455. doi: 10.1016/j.jcis.2006.11.034
-
[80]
(80) Zhao, Y.; Gao, S.; Wang, J.; Tang, J. J. Phys. Chem. B 2008, 112, 2031.
-
[81]
(81) Bhargava, B. L.; Klein, M. L. J. Phys. Chem. A 2009, 113, 1898. doi: 10.1021/jp8068865
-
[82]
(82) Bhargava, B. L.; Klein, M. L. J. Phys. Chem. B 2009, 113, 9499. doi: 10.1021/jp903560y
-
[83]
(83) Sharma, R.; Mahajan, R. K. RSC Adv. 2014, 4, 748. doi: 10.1039/C3RA42228C
-
[84]
(84) Singh, K.; Marangoni, D. G.; Quinn, J. G. J. Colloid Interface Sci. 2009, 335, 105. doi: 10.1016/j.jcis.2009.03.075
-
[85]
(85) Yuan, J.; Bai, X.; Zhao, M. Langmuir 2010, 26, 11726. doi: 10.1021/la101221z
-
[86]
(86) Rao, K. S.; Singh, T.; Kumar, A. Langmuir 2011, 27, 9261. doi: 10.1021/la201695a
-
[87]
(87) Rao, K. S.; Trivedi, T. J.; Kumar, A. J. Phys. Chem. B 2012, 116, 14363. doi: 10.1021/jp309717n
-
[88]
(88) Villa, C. C.; Moyano, F.; Ceolin, M.; Silber, J. J.; Falcone, R. D.; Correa, N. M. Chem. Eur. J. 2012, 18, 15598. doi: 10.1002/chem.201203246
-
[89]
(89) Rao, K. S.; Gehlot, P. S.; Trivedi, T. J.; Kumar, A. J. Colloid Interface Sci. 2014, 428, 267. doi: 10.1016/j.jcis.2014.04.062
-
[90]
(90) Chu, Z. L.; Dreiss, C. A.; Feng, Y. J. Chem. Soc. Rev. 2013, 42, 7174. doi: 10.1039/c3cs35490c
-
[91]
(91) Wang, H.; Zhang, L.; Wang, J.; Zhang, S. Chem. Commun. 2013, 49, 5222. doi: 10.1039/c3cc41908h
-
[92]
(92) Shi, L.; Wei, Y.; Sun, N.; Zheng, L. Chem. Commun. 2013, 49, 11388. doi: 10.1039/c3cc45550e
-
[93]
(93) Du, N.; Song, R.; Zhu, X.; Hou, W.; Li, H.; Zhang, R. Chem. Commun. 2014, 50, 10573.
-
[94]
(94) Figueira-González, M.; Francisco, V.; García-Río, L.; Marques, E. F.; Parajó, M.; Rodríguez-Dafonte, P. J. Phys. Chem. B 2013, 117, 2926. doi: 10.1021/jp3117962
-
[95]
(95) Rao, K. S.; Gehlot, P. S.; Gupta, H.; Drechsler, M.; Kumar, A. J. Phys. Chem. B 2015, 119, 4263. doi: 10.1021/jp512805e
-
[96]
(96) Wang, H.; Tan, B.; Wang, J.; Li, Z.; Zhang, S. Langmuir 2014, 30, 3971. doi: 10.1021/la500030k
-
[97]
(97) Wang, H.; Tan, B.; Zhang, H.; Wang, J. RSC Adv. 2015, 5, 65583. doi: 10.1039/C5RA12010A
-
[98]
(98) Yang, J.; Wang, H.; Wang, J.; Zhang, Y.; Guo, Z. Chem. Commun. 2014, 50, 14979. doi: 10.1039/C4CC04274C
-
[99]
(99) Bi, Y.; Wei, H.; Hu, Q.; Xu, W.; Gong, Y.; Yu, L. Langmuir 2015, 31, 3789. doi: 10.1021/acs.langmuir.5b00107
-
[1]
-
-
-
[1]
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
-
[2]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[3]
Ruoxi Sun , Yiqian Xu , Shaoru Rong , Chunmiao Han , Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001
-
[4]
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
-
[5]
Shuyu Liu , Xiaomin Sun , Bohan Song , Gaofeng Zeng , Bingbing Du , Chongshen Guo , Cong Wang , Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113
-
[6]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[7]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[8]
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
-
[9]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[10]
Yongzhi LI , Han ZHANG , Gangding WANG , Yanwei SUI , Lei HOU , Yaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307
-
[11]
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
-
[12]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[13]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[14]
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
-
[15]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[16]
Yongmin Zhang , Shuang Guo , Mingyue Zhu , Menghui Liu , Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026
-
[17]
Haiyu Nie , Chenhui Zhang , Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055
-
[18]
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
-
[19]
Dongheng WANG , Si LI , Shuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379
-
[20]
Qingjun PAN , Zhongliang GONG , Yuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(470)
- HTML views(57)