Citation: WANG Hui-Yong, LI Hong-Pei, CUI Guo-Kai, LI Zhi-Yong, WANG Jian-Ji. Recent Progress in Self-Assembly of Ionic Liquid Surfactants and Its Regulation and Control in Aqueous Solutions[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 249-260. doi: 10.3866/PKU.WHXB201512042
-
Application of ionic liquid surfactants in chemical synthesis, materials preparation, and environmental pollution control is closely dependent on their self-assembly behavior and aggregate structure in aqueous solution. Thus, the study of the aggregation behavior of ionic liquid surfactants in water is of significant importance. In this review, we focus our attention on the recent progress made in the regulation and control of the self-assembly behavior of ionic liquid surfactants and related microstructure of their aggregates in aqueous solutions by alkyl chain length, cationic structure, anionic type of the ionic liquid surfactants, addition of inorganic salt and organic solvent, and environmental factors such as temperature, solution pH, and light. Some regularities have been summarized for the regulation and control of the self-assembly behavior of ionic liquid surfactants, and the challenges to future development in this field are explained.
-
-
[1]
(1) Welton, T. Chem. Rev. 1996, 99, 2071.
-
[2]
(2) Seddon, K. R. J. Chem. Tech. Biotechnol. 1997, 68, 351.
-
[3]
(3) Wasserschein, P.; Welton, T. Ionic Liquids in Syntheses; VCH-Wiley: Weinhein, 2003
-
[4]
(4) Rantwijk, F.; Lau, R. M.; Sheldon, R. A. Trends Biotechnol. 2003, 21, 131. doi: 10.1016/S0167-7799(03)00008-8
-
[5]
(5) Jain, N.; Kumar, A.; Chauhan, S.; Chauhan, S. M. S. Tetrahedron 2005, 61, 1015. doi: 10.1016/j.tet.2004.10.070
-
[6]
(6) Buzzeo, M. C.; Evans, R. G.; Compton, R. G. ChemPhysChem 2004, 5, 1106.
-
[7]
(7) Endres, F.; Abedin, S. Z. E. Phys. Chem. Chem. Phys. 2006, 8, 2101. doi: 10.1039/b600519p
-
[8]
(8) Liu, J.; Jonsson, J. A.; Jing, G. Trends. Anal. Chem. 2005, 24, 20. doi: 10.1016/j.trac.2004.09.005
-
[9]
(9) Zhao, H.; Xia, S.; Ma, P. J. Chem. Technol. Biotechnol. 2005, 80, 1089
-
[10]
(10) Zhang, S.; Sun, J.; Zhang, X.; Xin, J.; Miao, Q.; Wang, J. Chem. Soc. Rev. 2014, 43, 7838. doi: 10.1039/C3CS60409H
-
[11]
(11) Chen, S.; Zhang, S.; Liu, X.; Wang, J.; Wang, J.; Dong, K.; Sun, J.; Xu, B. Phys. Chem. Chem. Phys. 2014, 16, 5893.
-
[12]
(12) Hayes, R.; Warr, G. G.; Atkin, R. Chem. Rev. 2015, 115, 6357. doi: 10.1021/cr500411q
-
[13]
(13) Dupont, J. Accounts Chem. Res. 2011, 44, 1223. doi: 10.1021/ar2000937
-
[14]
(14) Neto, B. A. D.; Meurer, E. C.; Galaverna, R.; Bythell, B. J.; Dupont, J.; Cooks, R. G.; Eberlin, M. N. J. Phys. Chem. Lett. 2012, 3, 3435. doi: 10.1021/jz301608c
-
[15]
(15) Marcus, Y.; Hefter, G. Chem. Rev. 2006, 106, 4585. doi: 10.1021/cr040087x
-
[16]
(16) Visser, A.; Swaltowski, R. P.; Reichert, R. M.; Mayton, R.; Sheff, S.; Wierzbicki, A.; Davis, J. H.; Rogers, R. D. Environ. Sci. Technol. 2002, 36, 252.
-
[17]
(17) Huddleston, J. G.; Visser, A. E.; Reichert, M. W.; Willauer, H. D.; Broker, G. A.; Rogers, R. D. Green Chem. 2001, 3, 156. doi: 10.1039/b103275p
-
[18]
(18) Bowers, J. P.; Butts, C. J.; Martin, P. C.; Vergara-Gutierrez, M. Langmuir 2004, 20, 2191. doi: 10.1021/la035940m
-
[19]
(19) Miskolczy, Z.; Sebok-Nagy, K.; Biczok, L.; Gokturk, S. Chem. Phys. Lett. 2004, 400, 296. doi: 10.1016/j.cplett.2004.10.127
-
[20]
(20) Vanyur, R.; Biczok, L.; Miskolczy, Z. Colloids Surf. A: Physicochem. Eng. Asp. 2007, 299, 256. doi: 10.1016/j.colsurfa.2006.11.049
-
[21]
(21) Bai, G.; Lopes, A.; Bastos, M. J. Chem. Thermodyn. 2008, 40, 1509. doi: 10.1016/j.jct.2008.05.016
-
[22]
(22) Inoue, T.; Ebina, H.; Dong, B.; Zheng, L. J. Colloid Interface Sci. 2007, 314, 236. doi: 10.1016/j.jcis.2007.05.052
-
[23]
(23) Łuczak, J.; Hupka, J.; Thoeming, J.; Jungnickel, C. International Scientific Conference, Surfactants and Dispersed Systems in Theory and Practice; PALMA Press: Wrocław/ Ksiaz Castle, 2007.
-
[24]
(24) Klevens, H. B. J. Am. Oil Chem. Soc. 1953, 30, 74. doi: 10.1007/BF02635002
-
[25]
(25) Baltazar, Q. Q.; Chandawalla, J.; Sawyer, K.; Anderson, J. L. Colloids Surf. A: Physicochem. Eng. Asp. 2007, 302, 150. doi: 10.1016/j.colsurfa.2007.02.012
-
[26]
(26) Wang, J.; Wang, H.; Zhang, S.; Zhang, H.; Zhao, Y. J. Phys. Chem. B 2007, 111, 6181. doi: 10.1021/jp068798h
-
[27]
(27) Stepnowski, P.; Nichthauser, J.; Mrozik, W.; Buszewski, B. Anal. Bioanal. Chem. 2006, 385, 1483. doi: 10.1007/s00216-006-0577-0
-
[28]
(28) Blesic, M.; Marques, M. H.; Plechkova, N. V.; Seddon, K. R.; Rebelo, L. P. N.; Lopes, A. Green Chem. 2007, 9, 48.
-
[29]
(29) Jungnickel, C.; Łuczak, J.; Ranke, J.; Fernández, J. F.; Müller, A.; Thöing, J. Colloids Surf. A: Physicochem. Eng. Asp. 2008, 316, 278. doi: 10.1016/j.colsurfa.2007.09.020
-
[30]
(30) Huibers, P. D. T.; Lobanov, V. S.; Katritzky, A. R.; Shah, D. O.; Karelson, M. J. Colloid Interface Sci. 1997, 187,113. doi: 10.1006/jcis.1996.4680
-
[31]
(31) Baker, G. A.; Pandey, S.; Pandey, S.; Baker, S. N. Analyst 2004, 12, 890.
-
[32]
(32) Łuczaka, J.; Hupkaa, J; Thöing, J.; Jungnickel, C. Colloids Surf. A: Physicochem. Eng. Asp. 2008, 329, 125. doi: 10.1016/j.colsurfa.2008.07.012
-
[33]
(33) Garcia, M. T.; Ribosa, I.; Perez, L.; Manresa, A.; Comelles, F. Langmuir 2013, 29, 2536. doi: 10.1021/la304752e
-
[34]
(34) Wang, X. Q.; Yu, L.; Jiao, J. J.; Zhang, H. N.; Wang, R.; Chen, H. J. Mol. Liq. 2012, 173, 103. doi: 10.1016/j.molliq.2012.06.023
-
[35]
(35) Brady, J. E.; Evans, D. F.; Warr, G. G.; Grieser, F.; Niham, B. W. J. Phys. Chem. 1986, 90, 1853. doi: 10.1021/j100400a024
-
[36]
(36) Wang, H.; Wang, J.; Zhang, S.; Xuan, X. J. Phys. Chem. B 2008, 112, 16682. doi: 10.1021/jp8069089
-
[37]
(37) Blesic, M.; Lopes, A.; Melo, E.; Petrovski, Z.; Plechkova, N. V.; Canongia Lopes, J. N.; Seddon, K. R.; Rebelo, L. P. N. J. Phys. Chem. B 2008, 112, 8645. doi: 10.1021/jp802179j
-
[38]
(38) Zana, R. Langmuir 1996, 12, 1208. doi: 10.1021/la950691q
-
[39]
(39) Tokuda, H.; Hayamizu, K.; Ishii, K.; Suan, M. D. A. B. H.; Watanabe, M. J. Phys. Chem. B 2005, 109, 6103. doi: 10.1021/jp044626d
-
[40]
(40) Ao, M.; Huang, P.; Xu, G.; Yang, X.; Wang, Y. Colloid Polym. Sci. 2009, 287, 395. doi: 10.1007/s00396-008-1976-x
-
[41]
(41) Bhadani, A.; Singh, S. Langmuir 2011, 27, 14033. doi: 10.1021/la202201r
-
[42]
(42) Kamboj, R.; Singh, S.; Bhadani, A.; Kataria, H.; Kaur, G. Langmuir 2012, 28, 11969. doi: 10.1021/la300920p
-
[43]
(43) Palchowdhury, S.; Bhargava, B. L. Phys. Chem. Chem. Phys. 2015, 17, 11627. doi: 10.1039/C5CP00873E
-
[44]
(44) Zhang, S.; Yan, H.; Zhao, M.; Zheng, L. J. Colloid Interface Sci. 2012, 372, 52. doi: 10.1016/j.jcis.2012.01.040
-
[45]
(45) Jiao, J.; Han, B.; Lin, M.; Cheng, N.; Yu, L.; Liu, M. J. Colloid Interface Sci. 2013, 412, 24. doi: 10.1016/j.jcis.2013.09.001
-
[46]
(46) Blesic, M.; Swadźba-Kwaśny, M.; Holbrey, J. D.; Lopes, J. C.; Seddonab, K. R.; Rebelo, L. P. N. Phys. Chem. Chem. Phys. 2009, 11, 4260. doi: 10.1039/b822341f
-
[47]
(47) Luo, G.; Qi, X.; Han, C.; Liu, C.; Gui, J. J. Surfact. Deterg. 2013, 16, 531. doi: 10.1007/s11743-012-1431-3
-
[48]
(48) Sepúlveda, L.; Cortés, J. J. Phys. Chem. 1985, 89, 5322. doi: 10.1021/j100270a040
-
[49]
(49) Marcus, Y. J. Chem. Soc. Faraday Trans. 1991, 87, 2995. doi: 10.1039/ft9918702995
-
[50]
(50) Bunton, C. A.; Cowell, C. J. Colloid Interface Sci. 1988, 122, 154. doi: 10.1016/0021-9797(88)90298-6
-
[51]
(51) Abdel-Rahem, R. Adv. Colloid Interface Sci. 2008, 141, 24. doi: 10.1016/j.cis.2008.02.002
-
[52]
(52) Shaw, D. J. Introduction to Colloid and Surface Chemistry; Butterworth, Heinemann: Oxford, 1992.
-
[53]
(53) Dong, B.; Li, N.; Zheng, L.; Yu, L.; Inoue, T. Langmuir 2007, 23, 4178.
-
[54]
(54) Dong, B.; Zhao, X.; Zheng, L.; Zhang, J.; Li, N.; Inoue, T. Colloids Surf. A: Physicochem. Eng. Asp. 2008, 317, 666. doi: 10.1016/j.colsurfa.2007.12.001
-
[55]
(55) Vaghela, N. M.; Sastry, N. V.; Aswal, V. K. Colloids Surf. A: Physicochem. Eng. Asp. 2011, 373, 101. doi: 10.1016/j.colsurfa.2010.10.031
-
[56]
(56) Ghasemian, E.; Najafi, M.; Rafati, A. A.; Felegari, Z. J. Chem. Thermodyn. 2010, 42, 962. doi: 10.1016/j.jct.2010.03.007
-
[57]
(57) Golabiazar, R.; Sadeghi, R. J. Chem. Thermodyn. 2014, 76, 29. doi: 10.1016/j.jct.2014.03.001
-
[58]
(58) Larsen, J. W.; Magidl, L. J. J. Am. Chem. Soc. 1974, 96, 5774. doi: 10.1021/ja00825a013
-
[59]
(59) Wang, H.; Feng, Q.; Wang, J.; Zhang, H. J. Phys. Chem. B 2010, 114, 1380. doi: 10.1021/jp910903s
-
[60]
(60) Anacker, E. W.; Ghose, H. M. J. Am. Chem. Soc. 1968, 90, 3161. doi: 10.1021/ja01014a034
-
[61]
(61) Freire, M. G.; Carvalho, P. J.; Silva, A. M. S. J. Phys. Chem. B 2009, 113, 202. doi: 10.1021/jp8080035
-
[62]
(62) Sadeghi, R.; Golabiazar, R. J. Mol. Liq. 2014, 197, 176. doi: 10.1016/j.molliq.2014.04.034
-
[63]
(63) Gu, Y.; Shi, L.; Cheng, X.; Lu, F.; Zheng, L. Langmuir 2013, 29, 6213. doi: 10.1021/la400497r
-
[64]
(64) Armstrong, D. W.; Henry, S. J. J. Liq. Chromatogr. 1980, 3, 657. doi: 10.1080/01483918008060181
-
[65]
(65) Berthod, A.; García-álvarez-Coque, C. Micellar Liquid Chromatography; Marcel Dekker: New York, 2000.
-
[66]
(66) Esteve-Romero, J.; Carda-Broch, S.; Gil-Agustí, M.; Capella-Peiró, M. E, Bose, D. Trends Anal. Chem. 2005, 24, 75.
-
[67]
(67) Armstrong, D. W. Sep. Purif. Methods 1985, 14, 213 doi: 10.1080/03602548508068421
-
[68]
(68) Thomas, D. P.; Foley, J. P. J. Chromatogr. A 2007, 1149, 282 doi: 10.1016/j.chroma.2007.03.045
-
[69]
(69) Ruiz-ángel, M. J.; Torres-Lapasió, J. R.; García-álvarez-Coque, M. C. Anal. Chem. 2008, 80, 9705. doi: 10.1021/ac801685p
-
[70]
(70) Pino, V.; Yao, C.; Anderson, J. L. J. Colloid Interface Sci. 2009, 333, 548. doi: 10.1016/j.jcis.2009.02.037
-
[71]
(71) Wang, J.; Zhang, L.; Wang, H.; Wu, C. J. Phys. Chem. B 2012, 115, 4955.
-
[72]
(72) Rodríguez, A.; Graciani, M. M.; Moyá, M. L. Langmuir 2008, 24, 12785. doi: 10.1021/la802320s
-
[73]
(73) Rodríguez, A.; Graciani, M. M.; Moyá, M. L. J. Colloid Interface Sci. 2009, 338, 207. doi: 10.1016/j.jcis.2009.06.005
-
[74]
(74) Rodriguez, J. R.; Gonzalez-Perez, A.; Del Castillo, J. L.; Czapkiewicz, J. J. Colloid Interface Sci. 2005, 250, 438.
-
[75]
(75) Chen, L.; Lin, S.; Huang, C.; Chen, E. Colloids Surf. A: Physicochem. Eng. Asp. 1998, 135, 175. doi: 10.1016/S0927-7757(97)00238-0
-
[76]
(76) Mehta, S. K.; Bhasin, K. K.; Chauhan, R.; Dham, S. Colloids Surf. A: Physicochem. Eng. Asp. 2005, 255, 153. doi: 10.1016/j.colsurfa.2004.12.038
-
[77]
(77) Muller, N. Langmuir 1993, 9, 96. doi: 10.1021/la00025a022
-
[78]
(78) Shi, L.; Li, N.; Yan, H. Langmuir 2011, 27, 1618. doi: 10.1021/la104719v
-
[79]
(79) Goodchild, I.; Collier, L.; Millar, S. L.; Prokěs, I.; Lord, J. C. D.; Butts, C. P. B.; Bowers, J.; Webster, J. R. P.; Heenan, R. K. J. Colloid Interface Sci. 2007, 307, 455. doi: 10.1016/j.jcis.2006.11.034
-
[80]
(80) Zhao, Y.; Gao, S.; Wang, J.; Tang, J. J. Phys. Chem. B 2008, 112, 2031.
-
[81]
(81) Bhargava, B. L.; Klein, M. L. J. Phys. Chem. A 2009, 113, 1898. doi: 10.1021/jp8068865
-
[82]
(82) Bhargava, B. L.; Klein, M. L. J. Phys. Chem. B 2009, 113, 9499. doi: 10.1021/jp903560y
-
[83]
(83) Sharma, R.; Mahajan, R. K. RSC Adv. 2014, 4, 748. doi: 10.1039/C3RA42228C
-
[84]
(84) Singh, K.; Marangoni, D. G.; Quinn, J. G. J. Colloid Interface Sci. 2009, 335, 105. doi: 10.1016/j.jcis.2009.03.075
-
[85]
(85) Yuan, J.; Bai, X.; Zhao, M. Langmuir 2010, 26, 11726. doi: 10.1021/la101221z
-
[86]
(86) Rao, K. S.; Singh, T.; Kumar, A. Langmuir 2011, 27, 9261. doi: 10.1021/la201695a
-
[87]
(87) Rao, K. S.; Trivedi, T. J.; Kumar, A. J. Phys. Chem. B 2012, 116, 14363. doi: 10.1021/jp309717n
-
[88]
(88) Villa, C. C.; Moyano, F.; Ceolin, M.; Silber, J. J.; Falcone, R. D.; Correa, N. M. Chem. Eur. J. 2012, 18, 15598. doi: 10.1002/chem.201203246
-
[89]
(89) Rao, K. S.; Gehlot, P. S.; Trivedi, T. J.; Kumar, A. J. Colloid Interface Sci. 2014, 428, 267. doi: 10.1016/j.jcis.2014.04.062
-
[90]
(90) Chu, Z. L.; Dreiss, C. A.; Feng, Y. J. Chem. Soc. Rev. 2013, 42, 7174. doi: 10.1039/c3cs35490c
-
[91]
(91) Wang, H.; Zhang, L.; Wang, J.; Zhang, S. Chem. Commun. 2013, 49, 5222. doi: 10.1039/c3cc41908h
-
[92]
(92) Shi, L.; Wei, Y.; Sun, N.; Zheng, L. Chem. Commun. 2013, 49, 11388. doi: 10.1039/c3cc45550e
-
[93]
(93) Du, N.; Song, R.; Zhu, X.; Hou, W.; Li, H.; Zhang, R. Chem. Commun. 2014, 50, 10573.
-
[94]
(94) Figueira-González, M.; Francisco, V.; García-Río, L.; Marques, E. F.; Parajó, M.; Rodríguez-Dafonte, P. J. Phys. Chem. B 2013, 117, 2926. doi: 10.1021/jp3117962
-
[95]
(95) Rao, K. S.; Gehlot, P. S.; Gupta, H.; Drechsler, M.; Kumar, A. J. Phys. Chem. B 2015, 119, 4263. doi: 10.1021/jp512805e
-
[96]
(96) Wang, H.; Tan, B.; Wang, J.; Li, Z.; Zhang, S. Langmuir 2014, 30, 3971. doi: 10.1021/la500030k
-
[97]
(97) Wang, H.; Tan, B.; Zhang, H.; Wang, J. RSC Adv. 2015, 5, 65583. doi: 10.1039/C5RA12010A
-
[98]
(98) Yang, J.; Wang, H.; Wang, J.; Zhang, Y.; Guo, Z. Chem. Commun. 2014, 50, 14979. doi: 10.1039/C4CC04274C
-
[99]
(99) Bi, Y.; Wei, H.; Hu, Q.; Xu, W.; Gong, Y.; Yu, L. Langmuir 2015, 31, 3789. doi: 10.1021/acs.langmuir.5b00107
-
[1]
-
-
[1]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[2]
Ruoxi Sun , Yiqian Xu , Shaoru Rong , Chunmiao Han , Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001
-
[3]
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
-
[4]
Shuyu Liu , Xiaomin Sun , Bohan Song , Gaofeng Zeng , Bingbing Du , Chongshen Guo , Cong Wang , Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113
-
[5]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[6]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[7]
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
-
[8]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[9]
Haiyu Nie , Chenhui Zhang , Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055
-
[10]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[11]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[12]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[13]
Yongmin Zhang , Shuang Guo , Mingyue Zhu , Menghui Liu , Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026
-
[14]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[15]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[16]
Cheng Rong , Jiang Jiang , Xinyu Zheng . Constructivism and Deconstructivism in General Chemistry Teaching: Taking the Teaching of Colloidal Solutions as an Example. University Chemistry, 2024, 39(2): 292-297. doi: 10.3866/PKU.DXHX202308035
-
[17]
Yinuo Wu , Jiantao Ye , Xie Zhou , Yu Qian , Lei Guo . Teaching Design of Basic Chemistry Based on PBL Methodology for Medical Undergraduates: A Case Study on “Osmotic Pressure of Solution”. University Chemistry, 2024, 39(3): 149-157. doi: 10.3866/PKU.DXHX202309077
-
[18]
Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075
-
[19]
Jia Huo , Jia Li , Yongjun Li , Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075
-
[20]
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(415)
- HTML views(48)