Citation: QIN Yu-Cai, GAO Xiong-Hou, SHI Li-Fei, ZHANG Li, DUAN Lin-Hai, SONG Li-Juan. Discrimination of the Mass Transfer Performance of In situ Crystallization FCC Catalysts by the Frequency Response Method[J]. Acta Physico-Chimica Sinica, ;2016, 32(2): 527-535. doi: 10.3866/PKU.WHXB201512033 shu

Discrimination of the Mass Transfer Performance of In situ Crystallization FCC Catalysts by the Frequency Response Method

  • Corresponding author: GAO Xiong-Hou,  SONG Li-Juan, 
  • Received Date: 27 August 2015
    Available Online: 2 December 2015

    Fund Project: 国家自然科学基金(21076100,21376114) (21076100,21376114)中国石油天然气股份有限公司(10-01A-01-01-01) (10-01A-01-01-01)

  • Mass transfer behaviors of benzene in an in situ crystallization fluid catalytic cracking (FCC) catalyst were measured and discriminated by the frequency response (FR) method and an intelligent gravimetric analyzer (IGA). The texture properties of the FCC catalysts were analyzed by N2 adsorption and scanning electron microscope (SEM). By comparison with the mass transfer performance of a semi-synthetic FCC catalyst, as well as a zeolite Y, the results show that the in situ crystallization FCC catalyst has excellent and improved mass transfer behavior over the semi-synthetic FCC catalyst and that it reduces the mass transfer resistance between the interface of zeolite crystal and substrate, which can be attributed to the excellent porous connectivity of the former with the unique accumulation state of the highly dispersed nanosized Y zeolite crystals. It has been demonstrated that the FR technique can be used to measure and distinguish the complex mass transport processes in hierarchical porous catalytic materials.
  • 加载中
    1. [1]

      (1) Chen, G. Q.; Luo, Z. H. Chem. Eng. Sci. 2014, 109, 38. doi: 10.1016/j.ces.2014.01.015

    2. [2]

      (2) Stockwell, D. M. Studies in Surface Science and Catalysis 2007, 166, 137. doi: 10.1016/S0167-2991(07)80193-5

    3. [3]

      (3) Mitchell, S.; Michels, N. L.; Pǒ rez-Ramí rez, J. Chem. Soc. Rev. 2013, 42, 6094. doi: 10.1039/c3cs60076a

    4. [4]

      (4) Liu, H. H.; Zhao, H. J.; Gao, X. H.; Ma, J. T. Catal. Today 2007, 125, 163. doi: 10.1016/j.cattod.2007.05.005

    5. [5]

      (5) Liu, H. H.; Ma, J. T.; Gao, X. H. Catal. Lett. 2006, 110, 229. doi: 10.1007/s10562-006-0113-z

    6. [6]

      (6) Liu, H. H.; Zhang, Y. M.; Zheng, S. Q.; Zhou, H. B. Petroleum Processing and Petrochemicals 2001, 32, 37. [刘宏海, 张永明, 郑淑琴, 周宏宝. 石油炼制与化工, 2001, 32, 37.]

    7. [7]

      (7) Stockwell, D. M.; Brown, R. P.; Brown, S. H. StructureEnhanced Cracking Catalysts. US Patent 6943132, 2005-09-13 .

    8. [8]

      (8) Lussier, R. J. Acid-Reacted Metakaolin Catalyst and CatalystSupport Compositions. US Patent 4843052, 1989-06-27.

    9. [9]

      (9) Falco, M.; Morgado, E.; Amadeo, N.; Sedran, U. Appl. Catal. A -Gen. 2006, 315, 29. doi: 10.1016/j.apcata.2006.08.028

    10. [10]

      (10) Hosseinpour, N.; Mortazavi, Y.; Bazyari, A.; Khodadadi, A. A.Fuel Process. Technol. 2009, 90, 171. doi: 10.1016/j.fuproc.2008.08.013

    11. [11]

      (11) Tonetto, G.; Atias, J.; De Lasa, H. Appl. Catal. A -Gen. 2004, 270, 9. doi: 10.1016/j.apcata.2004.03.042

    12. [12]

      (12) Avila, A. M.; Bidabehere, C. M.; Sedran, U. Chem. Eng. J. 2007, 132, 67. doi: 10.1016/j.cej.2007.01.020

    13. [13]

      (13) Kä rger, J. Chem. Eng. J. 2009, 145, 522. doi: 10.1016/j.cej.2008.08.001

    14. [14]

      (14) Lee, C. K.; Ashtekar, S.; Gladden, L. F.; Barrie, P. J. Chem. Eng. Sci. 2004, 59, 1131. doi: 10.1016/j.ces.2004.01.005

    15. [15]

      (15) Barrie, P. J.; Lee, C. K.; Gladden, L. F. Chem. Eng. Sci. 2004, 59, 1139. doi: 10.1016/j.ces.2004.01.008

    16. [16]

      (16) Kortunov, P.; Vasenkov, S.; Kä rger, J.; Fǒ Elí a, M.; Perez, M.; Stö cker, M.; Papadopoulos, G. K.; Theodorou, D.; Drescher, B.; McElhiney, G.; Bernauer, B.; Krystl, V.; Koč iř í k, M.; Ziká nová , A.; Jirglová , H.; Berger, C.; Glä ser, R.; Weitkamp, J.; Hansen, E.W. Chem. Mater. 2005, 17, 2466. doi: 10.1021/cm050031z

    17. [17]

      (17) Rees, L. V. C.; Song, L. J. Frequency Response Method for theCharacterization of MicroporousSolids. In Membrane Science and Technology; Kanellopoulos, N. K. Ed.; Elsevier:Amsterdam, 2000; series 6, pp 139-212.

    18. [18]

      (18) Li, F. F.; Gui, X. H.; Liu, D. S.; Song, L. J.; Sun, Z. L. Acta Phys. -Chim. Sin. 2008, 24 (4), 659. [李菲菲, 桂兴华, 刘道胜, 宋丽娟, 孙兆林. 物理化学学报, 2008, 24 (4), 659.] doi: 10.3866/PKU.WHXB20080419

    19. [19]

      (19) Qin, Y. C.; Mo, Z. S.; Yu, W. G.; Dong, S.W.; Duan, L. H.; Gao, X. H.; Song, L. J. Appl. Surf. Sci. 2014, 292, 5. doi: 10.1016/j.apsusc.2013.11.036

    20. [20]

      (20) Qin, Y. C.; Gao, X. H.; Zhang, H. T.; Zhang, S. H.; Zheng, L.G.; Li, Q.; Mo, Z. S.; Duan, L. H.; Zhang, X. T.; Song, L. J.Catal. Today 2015, 245, 147. doi: 10.1016/j.cattod.2014.06.007

    21. [21]

      (21) Song, L. J.; Rees, L. V. C. Microporous Mesoporous Mat. 2000, 35, 301.

    22. [22]

      (22) Onyestyá k, G.; Shen, D. N.; Rees, L. V. C. J. Chem. Soc. Faraday Trans. 1995, 91 (9), 1399. doi: 10.1039/ft9959101399

    23. [23]

      (23) Yasuda, Y. H. Chem. Rev. 1994, 1, 103.

    24. [24]

      (24) Crank, J. The Mathematics of Diffusion; Oxford Press:London, 1975; pp 90-91.

    25. [25]

      (25) Kondo, S.; Ishikawa, T.; Abe, I. Science of Adsorption, 2nded.; Chemical Industry Press: Beijing, 2005; pp 69-70; translated by Li, G. X. [近藤精一, 石川达雄, 安部郁夫. 吸附科学. 第二版. 李国希, 译. 北京: 化学工业出版社, 2005:69-70.]

    26. [26]

      (26) Qin, Y. C.; Gao, X. H.; Pei, T. T.; Zheng, L. G.; Wang, L.; Mo, Z. S.; Song, L. J. Journal of Fuel Chemistry and Technology 2013, 41 (7), 889. [秦玉才, 高雄厚, 裴婷婷, 郑兰歌, 王琳, 莫周胜, 宋丽娟. 燃料化学学报, 2013, 41 (7), 889.]

    27. [27]

      (27) Pǒ rez-Ramí rez, J.; Verboekend, D.; Bonilla, A.; Abelló , S. Adv. Funct. Mater. 2009, 19, 3972.

    28. [28]

      (28) Qin, Y. C.; Gao, X. H.; Duan, L. H.; Fan, Y. C.; Yu, W. G.; Zhang, H. T.; Song, L. J. Acta Phys. -Chim. Sin. 2014, 30 (3), 544. [秦玉才, 高雄厚, 段林海, 范跃超, 于文广, 张海涛, 宋丽娟. 物理化学学报, 2014, 30 (3), 544.] doi: 10.3866/PKU.WHXB201401021

    29. [29]

      (29) Zhang, X. T.; Yu, W. G.; Qin, Y. C.; Dong, S.W.; Pei, T. T.; Wang, L.; Song, L. J. Acta Phys. -Chim. Sin. 2013, 29 (6), 1273. [张晓彤, 于文广, 秦玉才, 董世伟, 裴婷婷, 王琳, 宋丽娟. 物理化学学报, 2013, 29 (6), 1273.] doi: 10.3866/PKU.WHXB201303183

  • 加载中
    1. [1]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    6. [6]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    7. [7]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    8. [8]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    9. [9]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    10. [10]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    17. [17]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    18. [18]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(0)
  • Abstract views(231)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return