Citation: QIN Yu-Cai, GAO Xiong-Hou, SHI Li-Fei, ZHANG Li, DUAN Lin-Hai, SONG Li-Juan. Discrimination of the Mass Transfer Performance of In situ Crystallization FCC Catalysts by the Frequency Response Method[J]. Acta Physico-Chimica Sinica, ;2016, 32(2): 527-535. doi: 10.3866/PKU.WHXB201512033 shu

Discrimination of the Mass Transfer Performance of In situ Crystallization FCC Catalysts by the Frequency Response Method

  • Corresponding author: GAO Xiong-Hou,  SONG Li-Juan, 
  • Received Date: 27 August 2015
    Available Online: 2 December 2015

    Fund Project: 国家自然科学基金(21076100,21376114) (21076100,21376114)中国石油天然气股份有限公司(10-01A-01-01-01) (10-01A-01-01-01)

  • Mass transfer behaviors of benzene in an in situ crystallization fluid catalytic cracking (FCC) catalyst were measured and discriminated by the frequency response (FR) method and an intelligent gravimetric analyzer (IGA). The texture properties of the FCC catalysts were analyzed by N2 adsorption and scanning electron microscope (SEM). By comparison with the mass transfer performance of a semi-synthetic FCC catalyst, as well as a zeolite Y, the results show that the in situ crystallization FCC catalyst has excellent and improved mass transfer behavior over the semi-synthetic FCC catalyst and that it reduces the mass transfer resistance between the interface of zeolite crystal and substrate, which can be attributed to the excellent porous connectivity of the former with the unique accumulation state of the highly dispersed nanosized Y zeolite crystals. It has been demonstrated that the FR technique can be used to measure and distinguish the complex mass transport processes in hierarchical porous catalytic materials.
  • 加载中
    1. [1]

      (1) Chen, G. Q.; Luo, Z. H. Chem. Eng. Sci. 2014, 109, 38. doi: 10.1016/j.ces.2014.01.015

    2. [2]

      (2) Stockwell, D. M. Studies in Surface Science and Catalysis 2007, 166, 137. doi: 10.1016/S0167-2991(07)80193-5

    3. [3]

      (3) Mitchell, S.; Michels, N. L.; Pǒ rez-Ramí rez, J. Chem. Soc. Rev. 2013, 42, 6094. doi: 10.1039/c3cs60076a

    4. [4]

      (4) Liu, H. H.; Zhao, H. J.; Gao, X. H.; Ma, J. T. Catal. Today 2007, 125, 163. doi: 10.1016/j.cattod.2007.05.005

    5. [5]

      (5) Liu, H. H.; Ma, J. T.; Gao, X. H. Catal. Lett. 2006, 110, 229. doi: 10.1007/s10562-006-0113-z

    6. [6]

      (6) Liu, H. H.; Zhang, Y. M.; Zheng, S. Q.; Zhou, H. B. Petroleum Processing and Petrochemicals 2001, 32, 37. [刘宏海, 张永明, 郑淑琴, 周宏宝. 石油炼制与化工, 2001, 32, 37.]

    7. [7]

      (7) Stockwell, D. M.; Brown, R. P.; Brown, S. H. StructureEnhanced Cracking Catalysts. US Patent 6943132, 2005-09-13 .

    8. [8]

      (8) Lussier, R. J. Acid-Reacted Metakaolin Catalyst and CatalystSupport Compositions. US Patent 4843052, 1989-06-27.

    9. [9]

      (9) Falco, M.; Morgado, E.; Amadeo, N.; Sedran, U. Appl. Catal. A -Gen. 2006, 315, 29. doi: 10.1016/j.apcata.2006.08.028

    10. [10]

      (10) Hosseinpour, N.; Mortazavi, Y.; Bazyari, A.; Khodadadi, A. A.Fuel Process. Technol. 2009, 90, 171. doi: 10.1016/j.fuproc.2008.08.013

    11. [11]

      (11) Tonetto, G.; Atias, J.; De Lasa, H. Appl. Catal. A -Gen. 2004, 270, 9. doi: 10.1016/j.apcata.2004.03.042

    12. [12]

      (12) Avila, A. M.; Bidabehere, C. M.; Sedran, U. Chem. Eng. J. 2007, 132, 67. doi: 10.1016/j.cej.2007.01.020

    13. [13]

      (13) Kä rger, J. Chem. Eng. J. 2009, 145, 522. doi: 10.1016/j.cej.2008.08.001

    14. [14]

      (14) Lee, C. K.; Ashtekar, S.; Gladden, L. F.; Barrie, P. J. Chem. Eng. Sci. 2004, 59, 1131. doi: 10.1016/j.ces.2004.01.005

    15. [15]

      (15) Barrie, P. J.; Lee, C. K.; Gladden, L. F. Chem. Eng. Sci. 2004, 59, 1139. doi: 10.1016/j.ces.2004.01.008

    16. [16]

      (16) Kortunov, P.; Vasenkov, S.; Kä rger, J.; Fǒ Elí a, M.; Perez, M.; Stö cker, M.; Papadopoulos, G. K.; Theodorou, D.; Drescher, B.; McElhiney, G.; Bernauer, B.; Krystl, V.; Koč iř í k, M.; Ziká nová , A.; Jirglová , H.; Berger, C.; Glä ser, R.; Weitkamp, J.; Hansen, E.W. Chem. Mater. 2005, 17, 2466. doi: 10.1021/cm050031z

    17. [17]

      (17) Rees, L. V. C.; Song, L. J. Frequency Response Method for theCharacterization of MicroporousSolids. In Membrane Science and Technology; Kanellopoulos, N. K. Ed.; Elsevier:Amsterdam, 2000; series 6, pp 139-212.

    18. [18]

      (18) Li, F. F.; Gui, X. H.; Liu, D. S.; Song, L. J.; Sun, Z. L. Acta Phys. -Chim. Sin. 2008, 24 (4), 659. [李菲菲, 桂兴华, 刘道胜, 宋丽娟, 孙兆林. 物理化学学报, 2008, 24 (4), 659.] doi: 10.3866/PKU.WHXB20080419

    19. [19]

      (19) Qin, Y. C.; Mo, Z. S.; Yu, W. G.; Dong, S.W.; Duan, L. H.; Gao, X. H.; Song, L. J. Appl. Surf. Sci. 2014, 292, 5. doi: 10.1016/j.apsusc.2013.11.036

    20. [20]

      (20) Qin, Y. C.; Gao, X. H.; Zhang, H. T.; Zhang, S. H.; Zheng, L.G.; Li, Q.; Mo, Z. S.; Duan, L. H.; Zhang, X. T.; Song, L. J.Catal. Today 2015, 245, 147. doi: 10.1016/j.cattod.2014.06.007

    21. [21]

      (21) Song, L. J.; Rees, L. V. C. Microporous Mesoporous Mat. 2000, 35, 301.

    22. [22]

      (22) Onyestyá k, G.; Shen, D. N.; Rees, L. V. C. J. Chem. Soc. Faraday Trans. 1995, 91 (9), 1399. doi: 10.1039/ft9959101399

    23. [23]

      (23) Yasuda, Y. H. Chem. Rev. 1994, 1, 103.

    24. [24]

      (24) Crank, J. The Mathematics of Diffusion; Oxford Press:London, 1975; pp 90-91.

    25. [25]

      (25) Kondo, S.; Ishikawa, T.; Abe, I. Science of Adsorption, 2nded.; Chemical Industry Press: Beijing, 2005; pp 69-70; translated by Li, G. X. [近藤精一, 石川达雄, 安部郁夫. 吸附科学. 第二版. 李国希, 译. 北京: 化学工业出版社, 2005:69-70.]

    26. [26]

      (26) Qin, Y. C.; Gao, X. H.; Pei, T. T.; Zheng, L. G.; Wang, L.; Mo, Z. S.; Song, L. J. Journal of Fuel Chemistry and Technology 2013, 41 (7), 889. [秦玉才, 高雄厚, 裴婷婷, 郑兰歌, 王琳, 莫周胜, 宋丽娟. 燃料化学学报, 2013, 41 (7), 889.]

    27. [27]

      (27) Pǒ rez-Ramí rez, J.; Verboekend, D.; Bonilla, A.; Abelló , S. Adv. Funct. Mater. 2009, 19, 3972.

    28. [28]

      (28) Qin, Y. C.; Gao, X. H.; Duan, L. H.; Fan, Y. C.; Yu, W. G.; Zhang, H. T.; Song, L. J. Acta Phys. -Chim. Sin. 2014, 30 (3), 544. [秦玉才, 高雄厚, 段林海, 范跃超, 于文广, 张海涛, 宋丽娟. 物理化学学报, 2014, 30 (3), 544.] doi: 10.3866/PKU.WHXB201401021

    29. [29]

      (29) Zhang, X. T.; Yu, W. G.; Qin, Y. C.; Dong, S.W.; Pei, T. T.; Wang, L.; Song, L. J. Acta Phys. -Chim. Sin. 2013, 29 (6), 1273. [张晓彤, 于文广, 秦玉才, 董世伟, 裴婷婷, 王琳, 宋丽娟. 物理化学学报, 2013, 29 (6), 1273.] doi: 10.3866/PKU.WHXB201303183

  • 加载中
    1. [1]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    2. [2]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    4. [4]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    9. [9]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    13. [13]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    16. [16]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    17. [17]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    18. [18]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    19. [19]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(0)
  • Abstract views(452)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return