Citation: ZHANG Xiao-Hong, XU Hong-Yan, GE Ling-Ling, GUO Rong. Mixed Micelle of Surface Active Ionic Liquid Lauryl Isoquinolinium Bromide and Nonionic Surfactant Triton X-100 in Aqueous Solutions[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 356-364. doi: 10.3866/PKU.WHXB201512012 shu

Mixed Micelle of Surface Active Ionic Liquid Lauryl Isoquinolinium Bromide and Nonionic Surfactant Triton X-100 in Aqueous Solutions

  • Corresponding author: GUO Rong, 
  • Received Date: 15 October 2015
    Available Online: 1 December 2015

    Fund Project: 国家自然科学基金(201010113,21573191) (201010113,21573191)

  • The critical micelle concentrations of binary systems of surface active ionic liquid lauryl isoquinolium bromide ([C12iQuin]Br) with nonionic surfactant Triton X-100 in aqueous solution were investigated by isothermal titration calorimetry. The location of [C12iQuin]Br and Triton X-100 in the mixed micelle was studied using 1H nuclear magnetic resonance (NMR) and two-dimensional nuclear Overhauser enhancement spectroscopy (2D NOESY). It was found that the polyoxyethylene chain of Triton X-100 forms random coils around the isoquinolinium ring. The interaction of molecules in the mixed micelle of [C12iQuin]Br- Triton X-100 was also studied using regular solution theory and the cloud point measurement technique, with comparison to the interaction of doceyl trimethyl ammonium bromide (DTAB)-Triton X-100.

    1. [1]

      (1) Zhang, H. B.; Zhou, X. H.; Dong, J. F.; Zhang, G. Y.; Wang, C. X. Science in China Ser. B Chemistry 2006, 36, 367. [张海波, 周晓海, 董金凤, 张高勇, 汪存信. 中国科学B辑: 化学, 2006, 36, 367.]

    2. [2]

      (2) Hui, N.; Hou, M. Q.; Yang, D. Z.; Kang, X. C.; Han, B. X. Acta Phys. -Chim. Sin. 2013, 29, 2107. [宁汇, 候民强, 杨德重, 康欣晨, 韩布兴. 物理化学学报, 2013, 29, 2107.] doi: 10.3866/PKU.WHXB201304172

    3. [3]

      (3) Hines, J. D. Curr. Opin. Colloid Interface Sci. 2001, 6, 350.

    4. [4]

      (4) Bergström, M.; Eriksson, J. C. Langmuir 2000, 16, 7173. doi: 10.1021/la000397k

    5. [5]

      (5) Cui, X. H.; Jiang, Y.; Yang, C. S.; Lu, X. Y.; Chen, H.; Mao, S. H.; Liu, M. L.; Yuan, H. Z.; Luo, P. Y.; Du. Y. R. J. Phys. Chem. B 2010, 114, 7808. doi: 10.1021/jp101032z

    6. [6]

      (6) Maeda, H. J. Phys. Chem. B 2004, 108, 6043. doi: 10.1021/jp037799w

    7. [7]

      (7) Shiloach, A.; Blankschtein, D. Langmuir 1998, 14, 7166. doi: 10.1021/la980646t

    8. [8]

      (8) Maeda, H. J. Colloid Interface Sci. 2003, 258, 390. doi: 00128-5">10.1016/S0021-979700128-5

    9. [9]

      (9) Smirnova, N. A.; Safonova, E. A. Colloid J. 2012, 74, 254. doi: 10.1134/S1061933X12020123

    10. [10]

      (10) Cammarata, L.; Kazarian, S. G.; Salter, P. A.; Welton, T. Phys. Chem. Chem. Phys. 2001, 3, 5192. doi: 10.1039/b106900d

    11. [11]

      (11) Phama, T. P. T.; Cho, C. W.; Yun, Y. S. Water Res. 2010, 44, 352. doi: 10.1016/j.watres.2009.09.030

    12. [12]

      (12) Behera, K.; Dahiya, P.; Pandey, S. J. Colloid Interface Sci. 2007, 307, 235. doi: 10.1016/j.jcis.2006.11.009

    13. [13]

      (13) Inoue, T.; Iwasaki, Y. J. Colloid Interface Sci. 2010, 348, 522. doi: 10.1016/j.jcis.2010.04.089

    14. [14]

      (14) Pramanik, R.; Sarkar, S.; Ghatak, C.; Rao, V. G.; Mandal, S.; Sarkar, N. J. Phys. Chem. B 2011, 115, 6957. doi: 10.1021/jp111755j

    15. [15]

      (15) Sun, T. X.; Gao, S.; Chen, Q. D.; Shen, X. H. Colloids Surf. A 2014, 456, 18. doi: 10.1016/j.colsurfa.2014.05.002

    16. [16]

      (16) Zhang, S. H.; Gao, Y. N.; Dong, B.; Zheng, L. Q. Colloids Surf. A 2010, 372, 182.

    17. [17]

      (17) Rao, V. G.; Mandal, S.; Ghosh, S.; Banerjee, C.; Sarkar, N. J. Phys. Chem. B 2012, 116, 13868. doi: 10.1021/jp309106a

    18. [18]

      (18) Domańska, U.; Zawadzki, M.; Paduszyński, K.; Królikowski, M. J. Phys. Chem. B 2012, 116, 8191.

    19. [19]

      (19) Busetti, A.; Crawford, D. B.; Gilmore, B. F.; Earle, M. J.; Gilea, M. A.; Gilmore, B. F.; Gorman, S. P.; Laverty, G.; Lowry, A. F.; MeLanghlin, M.; Seddon, K. R. Green Chem. 2010, 12, 420.

    20. [20]

      (20) Zhang, X. H.; Peng, X. Y.; Ge, L. L.; Yu, L.; Liu, Z. M.; Guo, R. Colloid Polym. Sci. 2014, 292, 1111. doi: 10.1007/s00396-013-3151-2

    21. [21]

      (21) Sharma, R.; Mahajan, R. K. RSC Adv. 2014, 4, 748. doi: 10.1039/C3RA42228C

    22. [22]

      (22) Li, Y. J.; Reeve, J.; Wang, Y. L. J. Phys. Chem. B 2005, 109, 16070. doi: 10.1021/jp0523874

    23. [23]

      (23) Yuan, H. Z.; Zhao, S.; Cheng, G. Z.; Zhang, L.; Miao, X. J.; Mao, S. Z.; Yu, J. Y.; Shen, L. F.; Du, Y. R. J. Phys. Chem. B 2001, 105, 4611.

    24. [24]

      (24) Yuan, H. Z.; Cheng, G. Z.; Zhao, S.; Miao, X. J.; Yu, J. Y. Langmuir 2000, 16, 3035.

    25. [25]

      (25) Zhao, G. X.; Zhu, B. Y. Physical Chemistry of Surfactants, 2nd ed.; China Light Industry Press: Bejing, 2003; pp 330–355. [赵国玺, 朱(王步)瑶. 表面活性剂物理化学. 第二版. 北京: 中国轻工出版社, 2003: 330–335.]

    26. [26]

      (26) Yan, Y.; Han, F.; Huang, J. B.; Li, Z. C.; Ma, J. M. Acta Phys. -Chim. Sin. 2002, 18, 830. [阎云, 韩峰, 黄建滨, 李子臣, 马季铭. 物理化学学报, 2002, 18, 830.] doi: 10.3866/PKU.WHXB20020913

    27. [27]

      (27) Rubingh, D. N.; Mittal, K. Mixed Micelle Solutions in Solution Chemistry of Surfactants; Plenum Press: New York, 1979; Vol. 1.

    28. [28]

      (28) Ruiz, C. C.; Aguiar, J. Langmuir 2000, 16, 7946. doi: 10.1021/la000154s

    29. [29]

      (29) Inoue, T.; Iwasaki, Y. J. Colloid Interface Sci. 2010, 348, 522. doi: 10.1016/j.jcis.2010.04.089

    30. [30]

      (30) Guo, R.; Zhu, W. Q.; Chen, Z. Q.; Qi, L.; Shen, M. Chem. J. Chin. Univ. 1995, 16, 1104. [郭荣, 朱文庆, 陈宗淇, 祁琳, 沈明. 高等学校化学学报, 1995, 16, 1104]

    1. [1]

      (1) Zhang, H. B.; Zhou, X. H.; Dong, J. F.; Zhang, G. Y.; Wang, C. X. Science in China Ser. B Chemistry 2006, 36, 367. [张海波, 周晓海, 董金凤, 张高勇, 汪存信. 中国科学B辑: 化学, 2006, 36, 367.]

    2. [2]

      (2) Hui, N.; Hou, M. Q.; Yang, D. Z.; Kang, X. C.; Han, B. X. Acta Phys. -Chim. Sin. 2013, 29, 2107. [宁汇, 候民强, 杨德重, 康欣晨, 韩布兴. 物理化学学报, 2013, 29, 2107.] doi: 10.3866/PKU.WHXB201304172

    3. [3]

      (3) Hines, J. D. Curr. Opin. Colloid Interface Sci. 2001, 6, 350.

    4. [4]

      (4) Bergström, M.; Eriksson, J. C. Langmuir 2000, 16, 7173. doi: 10.1021/la000397k

    5. [5]

      (5) Cui, X. H.; Jiang, Y.; Yang, C. S.; Lu, X. Y.; Chen, H.; Mao, S. H.; Liu, M. L.; Yuan, H. Z.; Luo, P. Y.; Du. Y. R. J. Phys. Chem. B 2010, 114, 7808. doi: 10.1021/jp101032z

    6. [6]

      (6) Maeda, H. J. Phys. Chem. B 2004, 108, 6043. doi: 10.1021/jp037799w

    7. [7]

      (7) Shiloach, A.; Blankschtein, D. Langmuir 1998, 14, 7166. doi: 10.1021/la980646t

    8. [8]

      (8) Maeda, H. J. Colloid Interface Sci. 2003, 258, 390. doi: 00128-5">10.1016/S0021-979700128-5

    9. [9]

      (9) Smirnova, N. A.; Safonova, E. A. Colloid J. 2012, 74, 254. doi: 10.1134/S1061933X12020123

    10. [10]

      (10) Cammarata, L.; Kazarian, S. G.; Salter, P. A.; Welton, T. Phys. Chem. Chem. Phys. 2001, 3, 5192. doi: 10.1039/b106900d

    11. [11]

      (11) Phama, T. P. T.; Cho, C. W.; Yun, Y. S. Water Res. 2010, 44, 352. doi: 10.1016/j.watres.2009.09.030

    12. [12]

      (12) Behera, K.; Dahiya, P.; Pandey, S. J. Colloid Interface Sci. 2007, 307, 235. doi: 10.1016/j.jcis.2006.11.009

    13. [13]

      (13) Inoue, T.; Iwasaki, Y. J. Colloid Interface Sci. 2010, 348, 522. doi: 10.1016/j.jcis.2010.04.089

    14. [14]

      (14) Pramanik, R.; Sarkar, S.; Ghatak, C.; Rao, V. G.; Mandal, S.; Sarkar, N. J. Phys. Chem. B 2011, 115, 6957. doi: 10.1021/jp111755j

    15. [15]

      (15) Sun, T. X.; Gao, S.; Chen, Q. D.; Shen, X. H. Colloids Surf. A 2014, 456, 18. doi: 10.1016/j.colsurfa.2014.05.002

    16. [16]

      (16) Zhang, S. H.; Gao, Y. N.; Dong, B.; Zheng, L. Q. Colloids Surf. A 2010, 372, 182.

    17. [17]

      (17) Rao, V. G.; Mandal, S.; Ghosh, S.; Banerjee, C.; Sarkar, N. J. Phys. Chem. B 2012, 116, 13868. doi: 10.1021/jp309106a

    18. [18]

      (18) Domańska, U.; Zawadzki, M.; Paduszyński, K.; Królikowski, M. J. Phys. Chem. B 2012, 116, 8191.

    19. [19]

      (19) Busetti, A.; Crawford, D. B.; Gilmore, B. F.; Earle, M. J.; Gilea, M. A.; Gilmore, B. F.; Gorman, S. P.; Laverty, G.; Lowry, A. F.; MeLanghlin, M.; Seddon, K. R. Green Chem. 2010, 12, 420.

    20. [20]

      (20) Zhang, X. H.; Peng, X. Y.; Ge, L. L.; Yu, L.; Liu, Z. M.; Guo, R. Colloid Polym. Sci. 2014, 292, 1111. doi: 10.1007/s00396-013-3151-2

    21. [21]

      (21) Sharma, R.; Mahajan, R. K. RSC Adv. 2014, 4, 748. doi: 10.1039/C3RA42228C

    22. [22]

      (22) Li, Y. J.; Reeve, J.; Wang, Y. L. J. Phys. Chem. B 2005, 109, 16070. doi: 10.1021/jp0523874

    23. [23]

      (23) Yuan, H. Z.; Zhao, S.; Cheng, G. Z.; Zhang, L.; Miao, X. J.; Mao, S. Z.; Yu, J. Y.; Shen, L. F.; Du, Y. R. J. Phys. Chem. B 2001, 105, 4611.

    24. [24]

      (24) Yuan, H. Z.; Cheng, G. Z.; Zhao, S.; Miao, X. J.; Yu, J. Y. Langmuir 2000, 16, 3035.

    25. [25]

      (25) Zhao, G. X.; Zhu, B. Y. Physical Chemistry of Surfactants, 2nd ed.; China Light Industry Press: Bejing, 2003; pp 330–355. [赵国玺, 朱(王步)瑶. 表面活性剂物理化学. 第二版. 北京: 中国轻工出版社, 2003: 330–335.]

    26. [26]

      (26) Yan, Y.; Han, F.; Huang, J. B.; Li, Z. C.; Ma, J. M. Acta Phys. -Chim. Sin. 2002, 18, 830. [阎云, 韩峰, 黄建滨, 李子臣, 马季铭. 物理化学学报, 2002, 18, 830.] doi: 10.3866/PKU.WHXB20020913

    27. [27]

      (27) Rubingh, D. N.; Mittal, K. Mixed Micelle Solutions in Solution Chemistry of Surfactants; Plenum Press: New York, 1979; Vol. 1.

    28. [28]

      (28) Ruiz, C. C.; Aguiar, J. Langmuir 2000, 16, 7946. doi: 10.1021/la000154s

    29. [29]

      (29) Inoue, T.; Iwasaki, Y. J. Colloid Interface Sci. 2010, 348, 522. doi: 10.1016/j.jcis.2010.04.089

    30. [30]

      (30) Guo, R.; Zhu, W. Q.; Chen, Z. Q.; Qi, L.; Shen, M. Chem. J. Chin. Univ. 1995, 16, 1104. [郭荣, 朱文庆, 陈宗淇, 祁琳, 沈明. 高等学校化学学报, 1995, 16, 1104]

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    5. [5]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    6. [6]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    7. [7]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    8. [8]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    9. [9]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    10. [10]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    11. [11]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    12. [12]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    13. [13]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    14. [14]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    15. [15]

      Huan Zhang Linyu Pu Wei Wang Yatang Dai Xu Huang . Curriculum Development and Blended Teaching Practice in the Graduate Course on Elemental Inorganic Chemistry. University Chemistry, 2024, 39(6): 166-173. doi: 10.3866/PKU.DXHX202402010

    16. [16]

      Zhiguang Xu Xuan Xu Qiong Luo Ganquan Wang Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112

    17. [17]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    18. [18]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    19. [19]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    20. [20]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

Metrics
  • PDF Downloads(0)
  • Abstract views(433)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return