Citation: MENG Xian-Mei, ZHANG Shao-Long, ZHANG Qing-Gang. Effect of the Allosteric Inhibitor Efavirenz on HIV-1 Reverse Transcriptase by Molecular Dynamics Simulation[J]. Acta Physico-Chimica Sinica, ;2016, 32(2): 436-444. doi: 10.3866/PKU.WHXB201511302 shu

Effect of the Allosteric Inhibitor Efavirenz on HIV-1 Reverse Transcriptase by Molecular Dynamics Simulation

  • Corresponding author: ZHANG Shao-Long,  ZHANG Qing-Gang, 
  • Received Date: 14 September 2015
    Available Online: 25 November 2015

    Fund Project: 国家自然科学基金(11274206)资助项目 (11274206)

  • To understand the allosteric modulation dynamics of non-nucleoside reverse transcriptase inhibitors (NNRTIs), various models and suggestions have been derived from crystallography and simulation. Here, using a new force field, ff12SB, and GPU parallel computing technology, we performed 100-ns-long molecular dynamics simulations on three reverse transcriptase (RT) systems, one bound to inhibitor Efavirenz (EFV) and the others free. Analyses of the influence of the EFV on the conformation of the RT, flexibility of residues and dynamic behaviors of the systems were conducted. The simulations indicate that EFV binding induces structural distortion of the RT, whereas the configuration of the RT is more stable during dynamics, along with a decreasing extent of motion of the residues. EFV suppresses the flexibility of the thumb subunit and reduces that of most residues in the fingers subdomain as well, suggesting that EFV causes not only the so-called“thumb arthritis” but also a slight“fingers arthritis”. No conformational transition occurred throughout the entire simulations and the samples maintained their starting conformations, i.e., free RT with a closed conformation stayed in the functional state and EFV-bound RT remained in open conformation. However, EFV-free RT with an initially open conformation exhibited an evident trend toward the closed state. These results agree with the models from experiments, and present a useful insight into the allosteric inhibition mechanism of NNRTIs. In addition, the simulation methodology has been discussed in detail and will be of significance to the computational simulation of large biological molecules.
  • 加载中
    1. [1]

      (1) Mathers, C. D.; Loncar, D. PLoS Med. 2006, 3 (11), e442.

    2. [2]

      (2) De Clercq, E. Chem. Biodivers. 2004, 1, 44.

    3. [3]

      (3) Ren, J.; Stammers, D. K. Trends Pharmacol. Sci. 2005, 26, 4. doi: 10.1016/j.tips.2004.11.003

    4. [4]

      (4) Zhu, R. X.; Wang, F.; Liu, Q.; Kang, T. G. Acta Chim. Sin. 2011, 69 (15), 1731. [朱瑞新, 王飞, 刘琦, 康廷国, 化学学报, 2011, 69 (15), 1731.]

    5. [5]

      (5) Jacobo-Molina, A.; Arnold, E. Biochemistry 1991, 30 (26), 6351. doi: 10.1021/bi00240a001

    6. [6]

      (6) Lawtrakul, L.; Beyer, A.; Hannongbua, S.; Wolschann, P.Monatsh. Chem. 2004, 135 (8), 1033.

    7. [7]

      (7) Sluis-Cremer, N.; Temiz, N. A.; Bahar, I. Curr. HIV Res. 2004, 2 (4), 323. doi: 10.2174/1570162043351093

    8. [8]

      (8) Bakan, A.; Bahar, I. Proc. Natl. Acad. Sci. U. S. A. 2009, 106(34), 14349. doi: 10.1073/pnas.0904214106

    9. [9]

      (9) Kohlstaedt, L. A.; Wang, J.; Friedman, J. M.; Rice, P. A.; Steitz, T. A. Science 1992, 256 (6), 1783. doi: 10.1126/science.1377403

    10. [10]

      (10) Liu, S. X.; Abbondanzieri, E. A.; Rausch, J.W.; Le Grice, S. F.J.; Zhuang, X.W. Science 2008, 322 (5904), 1092. doi: 10.1126/science.1163108

    11. [11]

      (11) Shen, L. L.; Shen, J. H.; Luo, X. M.; Cheng, F.; Xu, Y. C.; Chen, K. X.; Arnold, E.; Ding, J. P.; Jiang, H. L. Biophys. J. 2003, 84 (6), 3547. doi: 10.1016/S0006-3495(03)75088-7

    12. [12]

      (12) Zhou, Z.; Madrid, M.; Evanseck, J. D. J. Am. Chem. Soc. 2005, 127 (49), 17253. doi: 10.1021/ja053973d

    13. [13]

      (13) Madrid, M.; Jacobo-Molina, A.; Ding, J.; Arnold, E. Proteins 1999, 35 (3), 332.

    14. [14]

      (14) Madrid, M.; Lukin, J. A.; Madura, J. D.; Ding, J.; Arnold, E.Proteins 2001, 45 (3), 176.

    15. [15]

      (15) Ivetac, A.; McCammon, A. J. J. Mol. Biol. 2009, 388 (3), 644. doi: 10.1016/j.jmb.2009.03.037

    16. [16]

      (16) Wright, D.W.; Sadiq, S. K.; De Fabritiis, G.; Coveney, P. V.J. Am. Chem. Soc. 2012, 134 (31), 12885. doi: 10.1021/ja301565k

    17. [17]

      (17) Chen, J. Z.; Wang, J. N.; Zhu, W. L.; Li, G. H. J. Comput. Aided Mol. Des. 2013, 27 (11), 965.

    18. [18]

      (18) Luo, F.; Gao, J.; Cheng, Y. H.; Cui, W.; Ji, M. J. Acta Phys.-Chim. Sin. 2012, 28 (9), 2191. [罗芳, 高剑, 成元华, 崔巍, 计明娟. 物理化学学报, 2012, 28 (9), 2191.] doi: 10.3866/PKU.WHXB201207063

    19. [19]

      (19) Zhang, H.; Lu, J. R.; Mu, J. B.; Liu, J. B.; Yang, X. Y.; Wang, M. J.; Zhang, R. B. Acta Phys. -Chim. Sin. 2015, 31 (10), 566.[张贺, 卢俊瑞, 穆江蓓, 刘金彪, 杨旭云, 王美君, 张瑞波, 物理化学学报, 2015, 31 (10), 566.] doi: 10.3866/PKU.WHXB201501061

    20. [20]

      (20) Case, D. A.; Darden, T. A.; Cheatham, T. E., Ⅲ; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Walker, R. C.; Zhang, W.; Merz, K. M.; Roberts, B. P.; Hayik, S.; Roitberg, A. E.; Seabra, G.; Swails, J. M.; Kolossváry, I.; Wong, K. F.; Paesani, F.; Vanicek, J.; Wolf, R. M.; Liu, J.; Wu, X.; Brozell, S. R.; Steinbrecher, T.; Gohlke, H.; Cai, Q.; Ye, X.; Wang, J.; Hsieh, M. J.; Cui, G.; Roe, D. R.; Mathews, D. H.; Seetin, M. G.; Salomon-Ferrer, R.; Sagui, C.; Babin, V.; Luchko, T.; Gusarov, S.; Kovalenko, A.; Kollman, P. A. AMBER 12; University ofCalifornia: San Francisco, CA, 2012.

    21. [21]

      (21) Meng, X. M.; Wang, J. L.; Zhang, S. L.; Zhang, Q. G. Acta Chim. Sin. 2013, 71 (8), 1167. [孟现美, 王加磊, 张少龙, 张庆刚, 化学学报, 2013, 71 (8), 1167.] doi: 10.6023/A13030327

    22. [22]

      (22) Lindorff, L. K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R. O.; Shaw, D. E. Protein Force Field 2010, 78 (8), 1950.

    23. [23]

      (23) Chen, J. Z.; Zhang, D. L.; Zhang, Y. X.; Li, G. H. Int. J. Mol. Sci. 2012, 13 (2), 2176.

    24. [24]

      (24) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics 1996, 14 (1), 33. doi: 10.1016/0263-7855(96)00018-5

    25. [25]

      (25) The Theoretical and Computational Biophysics Group. VMD, Revision 1.8.7; NIH Center for Macromolecular Modeling andBioinformatics, the Beckman Institute, University of Illinois atUrbana-Champaign.

    26. [26]

      (26) Beyer, A.; Lawtrakul, L.; Hannongbua, S.; Wolschann, P.Monatsh. Chem. 2004, 135 (7), 1047.

    27. [27]

      (27) De Clercq, E. Nat. Rev. Drug Discov. 2007, 6 (12), 1001. doi: 10.1038/nrd2424

  • 加载中
    1. [1]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    4. [4]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    5. [5]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    8. [8]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    13. [13]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    14. [14]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    15. [15]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    16. [16]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    17. [17]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    18. [18]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    19. [19]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    20. [20]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

Metrics
  • PDF Downloads(0)
  • Abstract views(253)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return