Citation: ZHOU Yu, XU Jing, WANG Nan-Nan, YU Zhi-Wu. Excess Spectroscopy: Concept and Applications[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 239-248. doi: 10.3866/PKU.WHXB201511241 shu

Excess Spectroscopy: Concept and Applications

  • Corresponding author: YU Zhi-Wu, 
  • Received Date: 19 October 2015
    Available Online: 23 November 2015

    Fund Project: 国家自然科学基金(21133009,21473099)资助项目 (21133009,21473099)

  • Excess spectroscopy was proposed following the idea of excess thermodynamic functions. It is complementary to classical excess functions because it provides rich information on molecular interactions. In this review, we introduce in detail the concept of excess spectroscopy and the measurement of excess spectra for the case of infrared spectroscopy. We then describe the merits of using excess spectroscopy to enhance apparent spectral resolution, judge the non-ideality of mixtures, determine the selectivity of molecular interactions, identify distinct species or clusters in solutions, and provide information related to charge distributions in molecules. Following this, we review the progress in methodology where excess spectroscopy is extended to partial molar excess spectroscopy and Raman spectroscopy. The extension of binary mixtures to pseudo binary mixtures and/or liquid samples to solid samples is also described. Finally, we discuss several recent applications of excess spectroscopy in the study of hydrogen-bonding interactions in ionic liquidmolecular solvent systems, halogen-bonding interactions in benzene derivative-dimethylsulfoxide (DMSO) mixtures, and interactions between inorganic cations/anions and water molecules. Clearly, excess spectroscopy has opened a new window through which we can view rich information about molecular interactions.
  • 加载中
    1. [1]

      (1) Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry, 4th ed; Wiley-VCH Verlag & Co. KGaA: Germany, Weinheim, 2011.

    2. [2]

      (2) Zhou, K. B.; Li, Y. D. Angew. Chem. Int. Edit. 2012, 51, 602. doi: 10.1002/anie.201102619

    3. [3]

      (3) Tang, F. Q.; Li, L. L.; Chen, D. Adv. Mater. 2012, 24, 1504. doi: 10.1002/adma.201104763

    4. [4]

      (4) Czarnecki, M. A.; Czarnik-Matusewicz, B.; Ozaki, Y.; Iwahashi, M. J. Phys. Chem. A 2000, 104, 4906. doi: 10.1021/jp991753e

    5. [5]

      (5) Fumino, K.; Wulf, A.; Ludwig, R. Angew. Chem. Int. Edit. 2008, 47, 8731. doi: 10.1002/anie.v47:45

    6. [6]

      (6) Zheng, Y. Z.; Wang, N. N.; Luo, J. J.; Zhou, Y.; Yu, Z. W. Phys. Chem. Chem. Phys. 2013, 15, 18055. doi: 10.1039/c3cp53356e

    7. [7]

      (7) Scatchard, G.; Hamer, W. J. J. Am. Chem. Soc. 1935, 57, 1805. doi: 10.1021/ja01313a016

    8. [8]

      (8) Jiang, Y.; Liu, Y.; Sun, X. D.; Yu, Z. W. Thermochim. Acta 1991, 183, 99. doi: 10.1016/0040-6031(91)80449-S

    9. [9]

      (9) Yu, Z. W.; Liu, Y.; Sun, X. D. J. Solution Chem. 1992, 21, 497. doi: 10.1007/BF00649702

    10. [10]

      (10) Yu, Z. W.; Liu, Y.; Zhou, R.; Xue, F. Y. Sci. China Ser. B 2001, 44, 315. doi: 10.1007/BF02879622

    11. [11]

      (11) Zhao, X.; Yu, Z. W.; Zhou, R.; Liu, Y. J. Chem. Eng. Data 2001, 46, 1258. doi: 10.1021/je0100600

    12. [12]

      (12) Li, Q. Z.; Wu, G. S.; Yu, Z. W. J. Am. Chem. Soc. 2006, 128, 1438. doi: 10.1021/ja0569149

    13. [13]

      (13) Li, Q. Z.; Wang, N. N.; Zhou, Q.; Sun. S. Q.; Yu, Z. W. Appl. Spectrosc. 2008, 62, 166. doi: 10.1366/000370208783575663

    14. [14]

      (14) Yu, X. C.; Lin, K.; Hu, N. Y.; Zhou, X. G.; Liu, S. L. Acta Phys. -Chim. Sin. 2010, 26, 2473. [余小春, 林珂, 胡乃银, 周晓国, 刘世林. 物理化学学报, 2010, 26, 2473.] doi: 10.3866/PKU.WHXB20100922

    15. [15]

      (15) Wang, C. C.; Lin, K.; Hu, N. Y.; Zhou, X. G.; Liu, S. L. Acta Phys. -Chim. Sin. 2012, 28, 1823. [王陈琛, 林珂, 胡乃银, 周晓国, 刘世林. 物理化学学报, 2012, 28, 1823.] doi: 10.3866/PKU.WHXB201205154

    16. [16]

      (16) Weng, C. C. Fourier Transform Infrared Spectrometer; Chemical Industry Press: Beijing, 2005. [翁诗甫. 傅里叶变换红外光谱仪. 北京: 化学工业出版社, 2005.]

    17. [17]

      (17) Hansen, W. N. Spectrochim. Acta 1965, 21, 815. doi: 10.1016/0371-1951(65)80039-X

    18. [18]

      (18) Wang, N. N.; Zhang, Q. G.; Wu, F. G.; Li, Q. Z.; Yu, Z. W. J. Phys. Chem. B 2010, 114, 8689. doi: 10.1021/jp103438q

    19. [19]

      (19) Wang, N. N.; Jia, Q.; Li, Q. Z.; Yu, Z. W. J. Mol. Struct. 2008, 883–884, 55.

    20. [20]

      (20) Jia, Q.; Wang, N. N.; Yu, Z. W. Appl. Spectrosc. 2009, 63, 344.

    21. [21]

      (21) Zhou, Y.; Zheng, Y. Z.; Sun, H. Y.; Deng, G.; Yu, Z. W. Sci. Rep. 2015, 5, 16379. doi: 10.1038/srep16379

    22. [22]

      (22) Yang, X. G.; Wu, Q. L. The Analysis and Application of Raman Spectroscopy; National Defence of Industry Press: Beijing, 2008. [杨绪刚, 吴琪琳. 拉曼光谱的分析与应用. 北京: 国防工业出版社, 2008.]

    23. [23]

      (23) Koga, Y.; Sebe, F.; Minami, T.; Otake, K.; Saitow, K. I.; Nishikawa, K. J. Phys. Chem. B 2009, 113, 11928.

    24. [24]

      (24) Sebe, F.; Nishikawa, K.; Koga, Y. Phys. Chem. Chem. Phys. 2012, 14, 4433. doi: 10.1039/c2cp23255c

    25. [25]

      (25) Sebe, F.; Nishikawa, K.; Koga, Y. J. Solution Chem. 2015, 44, 1833. doi: 10.1007/s10953-015-0376-3

    26. [26]

      (26) Wang, N. N.; Wang, Y.; Cheng, H. F.; Tao, Z.; Wang, J.; Wu, W. Z. RSC Adv. 2013, 3, 20237. doi: 10.1039/c3ra42634c

    27. [27]

      (27) Wang, N. N.; Li, Q. Z.; Yu, Z. W. Appl. Spectrosc. 2009, 63, 1356. doi: 10.1366/000370209790109049

    28. [28]

      (28) Zhou, Y.; Zheng, Y. Z.; Sun, H. Y., Deng, G.; Yu, Z. W. J. Mol. Struct. 2014, 1069, 251. doi: 10.1016/j.molstruc.2014.02.027

    29. [29]

      (29) Tong, H. J.; Yu, J. Y.; Zhang, Y. H.; Reid, J. P. J. Phys. Chem. A 2010, 114, 6795. doi: 10.1021/jp912180d

    30. [30]

      (30) Corsetti, S.; Zehentbauer, F. M.; McGloin, D.; Kiefer, J. Fuel 2015, 141, 136. doi: 10.1016/j.fuel.2014.10.025

    31. [31]

      (31) Zhang, Q. G.; Wang, N. N.; Yu, Z. W. J. Phys. Chem. B 2010, 114, 4747. doi: 10.1021/jp1009498

    32. [32]

      (32) Zhang, Q. G.; Wang, N. N.; Wang, S. L.; Yu, Z. W. J. Phys. Chem. B 2011, 115, 11127. doi: 10.1021/jp204305g

    33. [33]

      (33) Zheng, Y. Z.; He, H. Y.; Zhou, Y.; Yu, Z. W. J. Mol. Struct. 2014, 1069, 140. doi: 10.1016/j.molstruc.2014.01.013

    34. [34]

      (34) He, H. Y.; Chen, H.; Zheng, Y. Z.; Zhang, X. C.; Yao, X. Q.; Yu, Z. W.; Zhang, S. J. Aust. J. Chem. 2013, 66, 50. doi: 10.1071/CH12308

    35. [35]

      (35) He, H. Y.; Chen, H.; Zheng, Y. Z.; Zhang, S. J.; Yu, Z. W. Chem. Eng. Sci. 2015, 121, 169. doi: 10.1016/j.ces.2014.07.024

    36. [36]

      (36) Kiefer, J.; Molina, M. M.; Noack, K. ChemPhysChem 2012, 13, 1213. doi: 10.1002/cphc.v13.5

    37. [37]

      (37) Zheng, Y. Z.; Wang, N, N.; Zhou, Y.; Sun, H. Y.; Yu, Z. W. Phys. Chem. Chem. Phys. 2014, 16, 6946. doi: 10.1039/c3cp55451a

    38. [38]

      (38) Zheng, Y. Z.; Deng, G.; Zhou, Y.; Sun, H. Y.; Yu, Z. W. ChemPhysChem 2015, 16, 2594. doi: 10.1002/cphc.v16.12

    39. [39]

      (39) Dumas, J. M.; Gomel, M.; Guerin, M. Halides, Pseudo-Halides and Azides 1983, 2, 985.

    40. [40]

      (40) Clark, T.; Hennemann, M.; Murray, J. S.; Politzer, P. J. Mol. Model. 2007, 13, 291. doi: 10.1007/s00894-006-0130–2

    41. [41]

      (41) Politzer, P.; Murray, J. S. ChemPhysChem 2013, 14, 278. doi: 10.1002/cphc.201200799

    42. [42]

      (42) Politzer, P.; Murray, J. S.; Clark, T. Phys. Chem. Chem. Phys. 2010, 12, 7748. doi: 10.1039/c004189k

    43. [43]

      (43) Metrangolo, P.; Resnati, G.; Pilati, T.; Biella, S. Halogen Bonding in Crystal Engineering; Springer: Berlin Heidelberg, 2008.

  • 加载中
    1. [1]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    2. [2]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    3. [3]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    4. [4]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    5. [5]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    6. [6]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    7. [7]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    8. [8]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    9. [9]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    10. [10]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    11. [11]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    12. [12]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    13. [13]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    14. [14]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    15. [15]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    16. [16]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    17. [17]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    20. [20]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

Metrics
  • PDF Downloads(0)
  • Abstract views(336)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return