Citation: HU Hai-Feng, HE Tao. Controllable Modulation of Morphology and Photocatalytic Performance of ZnO Nanomaterials via pH Adjustment[J]. Acta Physico-Chimica Sinica, ;2016, 32(2): 543-550. doi: 10.3866/PKU.WHXB201511194
-
ZnO microstructures and nanostructures with controlled-morphology were synthesized by the hydrothermal method. All samples were prepared using precursors at different pH values and then annealed at 500 ℃ for 2 h. The samples were characterized by X-ray diffraction (XRD) patterns, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-Vis), and BET specific surface area measurement. All samples were confirmed by XRD to be wurtzite ZnO. As the pH value of the precursor increased, sheet-like ZnO disappeared and rod-like ZnO was produced. The major surfaces of sheet-like and rod-like ZnO were polar and nonpolar crystal faces, respectively. At pH 6.5, Cl- was adsorbed onto the (002) polar face and inhibited the growth along the polar crystal face ({Zn2+}crystal surface). A microporous sheet ZnO was formed by annealing the obtained sheet-like Zn5(OH)8Cl2·H2O. When OH- was added into the precursor, Zn(OH)42- was generated via coordination with Zn2+, which was adsorbed onto the (002) polar face and promoted growth along the polar crystal face. Rod-like ZnO was thus produced. The obtained ZnO could photocatalytically reduce CO2 under illumination. Sheet-like ZnO exhibited better photocatalytic performance than rod-like ZnO. This may be because the polar crystal face shows better photocatalytic activity than the unpolar crystal face.
-
Keywords:
- ZnO,
- pH value,
- Hydrothermal process,
- Morphology,
- Photoreduction of CO2
-
-
[1]
(1) Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Nature 1979, 277 (5698), 637.
-
[2]
(2) Qin, G. H.; Zhang, Y.; Ke, X. B.; Tong, X. L.; Sun, Z.; Liang, M.; Xue, S. Applied Catalysis B: Environmental 2013, 129, 599.
-
[3]
(3) Hemminger, J. C.; Carr, R.; Somorjai, G. A. Chemical Physics Letters 1978, 57 (1), 100.
-
[4]
(4) Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S. Physical Chemistry Chemical Physics 2000, 2 (11), 2635.
-
[5]
(5) Guan, G. Q.; Kida, T.; Harada, T.; Isayama, M.; Yoshida, A.Applied Catalysis A: General 2003, 249 (1), 11.
-
[6]
(6) Teramura, K.; Okuoka, S.i.; Tsuneoka, H.; Shishido, T.; Tanaka, T. Applied Catalysis B: Environmental 2010, 96 (3-4), 565.
-
[7]
(7) Liu, Y. Y.; Huang, B. B.; Dai, Y.; Zhang, X. Y.; Qin, X. Y.; Jiang, M. H.; Whangbo, M. H. Catalysis Communications 2009, 11 (3), 210.
-
[8]
(8) Huang, Y.; Fu, M.; He, T. Acta Phys. -Chim. Sin. 2015, 31 (6), 1145. [黄艳, 傅敏, 贺涛. 物理化学学报, 2015, 31 (6), 1145.] doi: 10.3866/PKU.WHXB201504015
-
[9]
(9) Li, P.; Zhou, Y.; Tu, W.; Liu, Q.; Yan, S.; Zou, Z.ChemPlusChem 2013, 78 (3), 274.
-
[10]
(10) Li, P.; Zhou, Y.; Tu, W. G.; Wang, R.; Zhang, C. F.; Liu, Q.; Li, H. J.; Li, Z. D.; Dai, H.; Wang, J. J.; Yan, S. C.; Zou, Z. G.CrystEngComm. 2013, 15 (46), 9855.
-
[11]
(11) Chen, X.; Zhou, Y.; Liu, Q.; Li, Z.; Liu, J.; Zou, Z. ACS Appl. Mater. Interfaces 2012, 4 (7), 3372.
-
[12]
(12) Yan, S. C.; Ouyang, S. X.; Gao, J.; Yang, M.; Feng, J. Y.; Fan, X. X.; Wan, L. J.; Li, Z. S.; Ye, J. H.; Zhou, Y.; Zou, Z. G.Angewandte Chemie International Edition 2010, 49 (36), 6400. doi: 10.1002/anie.201003270
-
[13]
(13) Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J.; Zhu, Y. Inorganic Chemistry 2007, 46 (16), 6675. doi: 10.1021/ic062394m
-
[14]
(14) Chen, Y.; Zhao, H.; Liu, B.; Yang, H. Q. Applied Catalysis B: Environmental 2015, 163, 189. doi: 10.1016/j.apcatb.2014.07.044
-
[15]
(15) Tang, Q. L.; Luo, Q. H. The Journal of Physical Chemistry C 2013, 117 (44), 22954. doi: 10.1021/jp407970a
-
[16]
(16) Farias, S. A.; Longo, E.; Gargano, R.; Martins, J. B. Journal of Molecular Modeling 2013, 19 (5), 2069. doi: 10.1007/s00894-012-1636-4
-
[17]
(17) Pacholski, C.; Kornowski, A.; Weller, H. Angewandte Chemie International Edition 2002, 41 (7), 1188.
-
[18]
(18) Zhang, L. N.; Yang, H. Q.; Ma, J. H.; Li, L.; Wang, X.W.; Zhang, L. H.; Tian, S.; Wang, X. Y. Applied Physics A 2010, 100 (4), 1061. doi: 10.1007/s00339-010-5737-6
-
[19]
(19) Cheng, B.; Samulski, E. T. Chemical Communications 2004, (No.8), 986.
-
[20]
(20) Rupasinghe, R.A.T. P. Dissolution and Aggregation of ZincOxide Nanoparticles at Circumneutral pH: a Study of SizeEffects in the Presence and Absence of Citric Acid. M. S.Dissertation, University of Iowa, Iowa City, 2011.
-
[21]
(21) Georgiou, P.; Kolokotronis, K.; Simitzis, J. Journal of Nano Research 2009, 6, 157. doi: 10.4028/www.scientific.net/JNanoR.6
-
[22]
(22) Chen, D. R.; Jiao, X. L.; Cheng, G. Solid State Communications 1999, 113 (6), 363. doi: 10.1016/S0038-1098(99)00472-X
-
[23]
(23) Liu, H. X.; Huang, B. B.; Wang, Z. Y.; Qin, X. Y.; Zhang, X.Y.; Wei, J. Y.; Dai, Y.; Wang, P.; Whangbo, M. H. Journal of Alloys and Compounds 2010, 507 (1), 326. doi: 10.1016/j.jallcom.2010.07.192
-
[24]
(24) Sun, X.; Qiu, X.; Li, L.; Li, G. Inorganic Chemistry 2008, 47(10), 4146. doi: 10.1021/ic702348c
-
[25]
(25) Zhang, W. X.; Yanagisawa, K. Chemistry Letters 2005, 34 (8), 1170. doi: 10.1246/cl.2005.1170
-
[26]
(26) Zhang, W. X.; Yanagisawa, K. Chemistry of Materials 2007, 19 (9), 2329. doi: 10.1021/cm0626841
-
[27]
(27) Moriya, M.; Yoshikawa, K.; Sakamoto, W.; Yogo, T. Inorganic Chemistry 2009, 48 (17), 8544. doi: 10.1021/ic900864a
-
[28]
(28) Wang, X. B.; Cai, W. P.; Lin, Y. X.; Wang, G. Z.; Liang, C. H.Journal of Materials Chemistry 2010, 20 (39), 8582. doi: 10.1039/c0jm01024c
-
[29]
(29) Liu, Y.; Wang, D.; Peng, Q.; Chu, D.; Liu, X.; Li, Y. Inorganic Chemistry 2011, 50 (12), 5841. doi: 10.1021/ic2009013
-
[30]
(30) Kong, X. Y.; Ding, Y.; Yang, R. S.; Wang, Z. L. Science 2004, 303 (5662), 1348. doi: 10.1126/science.1092356
-
[31]
(31) Huang, K. J.; Yan, L.; Xie, C. S. Materials Review 2010, 24(6), 7. [黄开金, 闫里, 谢长生. 材料导报: 综述篇, 2010, 24(6), 7.]
-
[32]
(32) Hu, H. F.; He, T. Acta Phys. -Chim. Sin. 2015, 31 (7), 1421. [胡海峰, 贺涛, 物理化学学报, 2015, 31 (7), 1421] doi: 10.3866/PKU.WHXB201504221
-
[33]
(33) Akgun, M. C.; Afal, A.; Unalan, H. E. Journal of Materials Research 2012, 27 (18), 2401. doi: 10.1557/jmr.2012.258
-
[34]
(34) Wang, Y. X.; Fan, X. Y.; Yu, X. China Ceramics 2008, 44 (12), 26. [王艳香, 范学运, 余熙. 中国陶瓷, 2008, 44 (12), 26.]
-
[35]
(35) Greene, L. E.; Yuhas, B. D.; Law, M.; Zitoun, D.; Yang, P.Inorganic Chemistry 2006, 45 (19), 7535. doi: 10.1021/ic0601900
-
[36]
(36) Su, Z.W.; Fang, Y.; Li, Z.; Xu, K. China Ceramics 2013, 49(6), 13. [苏照伟, 方莹, 李镇, 徐坤. 中国陶瓷, 2013, 49 (6), 13.]
-
[37]
(37) Illy, B. N.; Ingham, B.; Ryan, M. P. Crystal Growth & Design 2010, 10 (3), 1189. doi: 10.1021/cg901156z
-
[38]
(38) Yang, J. H.; Wang, J.; Li, X. Y.; Lang, J. H.; Liu, F. Z.; Yang, L. L.; Zhai, H. J.; Gao, M.; Zhao, X. T. Journal of Alloys and Compounds 2012, 528, 28. doi: 10.1016/j.jallcom.2012.02.162
-
[39]
(39) Pawar, R. C.; Choi, D. H.; Lee, J. S.; Lee, C. S. Materials Chemistry and Physics 2015, 151, 167. doi: 10.1016/j.matchemphys.2014.11.051
-
[1]
-
-
[1]
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
-
[2]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[3]
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
-
[4]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[5]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[6]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[7]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[8]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[9]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[10]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[11]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[12]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[13]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[14]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[15]
Jie Ren , Hao Zong , Yaqun Han , Tianyi Liu , Shufen Zhang , Qiang Xu , Suli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350
-
[16]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[17]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
-
[18]
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
-
[19]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[20]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(420)
- HTML views(52)