Citation:
	            
		            HU  Hai-Feng, HE  Tao. Controllable Modulation of Morphology and Photocatalytic Performance of ZnO Nanomaterials via pH Adjustment[J]. Acta Physico-Chimica Sinica,
							;2016, 32(2): 543-550.
						
							doi:
								10.3866/PKU.WHXB201511194
						
					
				
					
				
	        
- 
	                	ZnO microstructures and nanostructures with controlled-morphology were synthesized by the hydrothermal method. All samples were prepared using precursors at different pH values and then annealed at 500 ℃ for 2 h. The samples were characterized by X-ray diffraction (XRD) patterns, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-Vis), and BET specific surface area measurement. All samples were confirmed by XRD to be wurtzite ZnO. As the pH value of the precursor increased, sheet-like ZnO disappeared and rod-like ZnO was produced. The major surfaces of sheet-like and rod-like ZnO were polar and nonpolar crystal faces, respectively. At pH 6.5, Cl- was adsorbed onto the (002) polar face and inhibited the growth along the polar crystal face ({Zn2+}crystal surface). A microporous sheet ZnO was formed by annealing the obtained sheet-like Zn5(OH)8Cl2·H2O. When OH- was added into the precursor, Zn(OH)42- was generated via coordination with Zn2+, which was adsorbed onto the (002) polar face and promoted growth along the polar crystal face. Rod-like ZnO was thus produced. The obtained ZnO could photocatalytically reduce CO2 under illumination. Sheet-like ZnO exhibited better photocatalytic performance than rod-like ZnO. This may be because the polar crystal face shows better photocatalytic activity than the unpolar crystal face.
- 
								Keywords:
								
 - ZnO,
 - pH value,
 - Hydrothermal process,
 - Morphology,
 - Photoreduction of CO2
 
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
(1) Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Nature 1979, 277 (5698), 637.
 - 
			
                    [2]
                
			
(2) Qin, G. H.; Zhang, Y.; Ke, X. B.; Tong, X. L.; Sun, Z.; Liang, M.; Xue, S. Applied Catalysis B: Environmental 2013, 129, 599.
 - 
			
                    [3]
                
			
(3) Hemminger, J. C.; Carr, R.; Somorjai, G. A. Chemical Physics Letters 1978, 57 (1), 100.
 - 
			
                    [4]
                
			
(4) Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S. Physical Chemistry Chemical Physics 2000, 2 (11), 2635.
 - 
			
                    [5]
                
			
(5) Guan, G. Q.; Kida, T.; Harada, T.; Isayama, M.; Yoshida, A.Applied Catalysis A: General 2003, 249 (1), 11.
 - 
			
                    [6]
                
			
(6) Teramura, K.; Okuoka, S.i.; Tsuneoka, H.; Shishido, T.; Tanaka, T. Applied Catalysis B: Environmental 2010, 96 (3-4), 565.
 - 
			
                    [7]
                
			
(7) Liu, Y. Y.; Huang, B. B.; Dai, Y.; Zhang, X. Y.; Qin, X. Y.; Jiang, M. H.; Whangbo, M. H. Catalysis Communications 2009, 11 (3), 210.
 - 
			
                    [8]
                
			
(8) Huang, Y.; Fu, M.; He, T. Acta Phys. -Chim. Sin. 2015, 31 (6), 1145. [黄艳, 傅敏, 贺涛. 物理化学学报, 2015, 31 (6), 1145.] doi: 10.3866/PKU.WHXB201504015
 - 
			
                    [9]
                
			
(9) Li, P.; Zhou, Y.; Tu, W.; Liu, Q.; Yan, S.; Zou, Z.ChemPlusChem 2013, 78 (3), 274.
 - 
			
                    [10]
                
			
(10) Li, P.; Zhou, Y.; Tu, W. G.; Wang, R.; Zhang, C. F.; Liu, Q.; Li, H. J.; Li, Z. D.; Dai, H.; Wang, J. J.; Yan, S. C.; Zou, Z. G.CrystEngComm. 2013, 15 (46), 9855.
 - 
			
                    [11]
                
			
(11) Chen, X.; Zhou, Y.; Liu, Q.; Li, Z.; Liu, J.; Zou, Z. ACS Appl. Mater. Interfaces 2012, 4 (7), 3372.
 - 
			
                    [12]
                
			
(12) Yan, S. C.; Ouyang, S. X.; Gao, J.; Yang, M.; Feng, J. Y.; Fan, X. X.; Wan, L. J.; Li, Z. S.; Ye, J. H.; Zhou, Y.; Zou, Z. G.Angewandte Chemie International Edition 2010, 49 (36), 6400. doi: 10.1002/anie.201003270
 - 
			
                    [13]
                
			
(13) Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J.; Zhu, Y. Inorganic Chemistry 2007, 46 (16), 6675. doi: 10.1021/ic062394m
 - 
			
                    [14]
                
			
(14) Chen, Y.; Zhao, H.; Liu, B.; Yang, H. Q. Applied Catalysis B: Environmental 2015, 163, 189. doi: 10.1016/j.apcatb.2014.07.044
 - 
			
                    [15]
                
			
(15) Tang, Q. L.; Luo, Q. H. The Journal of Physical Chemistry C 2013, 117 (44), 22954. doi: 10.1021/jp407970a
 - 
			
                    [16]
                
			
(16) Farias, S. A.; Longo, E.; Gargano, R.; Martins, J. B. Journal of Molecular Modeling 2013, 19 (5), 2069. doi: 10.1007/s00894-012-1636-4
 - 
			
                    [17]
                
			
(17) Pacholski, C.; Kornowski, A.; Weller, H. Angewandte Chemie International Edition 2002, 41 (7), 1188.
 - 
			
                    [18]
                
			
(18) Zhang, L. N.; Yang, H. Q.; Ma, J. H.; Li, L.; Wang, X.W.; Zhang, L. H.; Tian, S.; Wang, X. Y. Applied Physics A 2010, 100 (4), 1061. doi: 10.1007/s00339-010-5737-6
 - 
			
                    [19]
                
			
(19) Cheng, B.; Samulski, E. T. Chemical Communications 2004, (No.8), 986.
 - 
			
                    [20]
                
			
(20) Rupasinghe, R.A.T. P. Dissolution and Aggregation of ZincOxide Nanoparticles at Circumneutral pH: a Study of SizeEffects in the Presence and Absence of Citric Acid. M. S.Dissertation, University of Iowa, Iowa City, 2011.
 - 
			
                    [21]
                
			
(21) Georgiou, P.; Kolokotronis, K.; Simitzis, J. Journal of Nano Research 2009, 6, 157. doi: 10.4028/www.scientific.net/JNanoR.6
 - 
			
                    [22]
                
			
(22) Chen, D. R.; Jiao, X. L.; Cheng, G. Solid State Communications 1999, 113 (6), 363. doi: 10.1016/S0038-1098(99)00472-X
 - 
			
                    [23]
                
			
(23) Liu, H. X.; Huang, B. B.; Wang, Z. Y.; Qin, X. Y.; Zhang, X.Y.; Wei, J. Y.; Dai, Y.; Wang, P.; Whangbo, M. H. Journal of Alloys and Compounds 2010, 507 (1), 326. doi: 10.1016/j.jallcom.2010.07.192
 - 
			
                    [24]
                
			
(24) Sun, X.; Qiu, X.; Li, L.; Li, G. Inorganic Chemistry 2008, 47(10), 4146. doi: 10.1021/ic702348c
 - 
			
                    [25]
                
			
(25) Zhang, W. X.; Yanagisawa, K. Chemistry Letters 2005, 34 (8), 1170. doi: 10.1246/cl.2005.1170
 - 
			
                    [26]
                
			
(26) Zhang, W. X.; Yanagisawa, K. Chemistry of Materials 2007, 19 (9), 2329. doi: 10.1021/cm0626841
 - 
			
                    [27]
                
			
(27) Moriya, M.; Yoshikawa, K.; Sakamoto, W.; Yogo, T. Inorganic Chemistry 2009, 48 (17), 8544. doi: 10.1021/ic900864a
 - 
			
                    [28]
                
			
(28) Wang, X. B.; Cai, W. P.; Lin, Y. X.; Wang, G. Z.; Liang, C. H.Journal of Materials Chemistry 2010, 20 (39), 8582. doi: 10.1039/c0jm01024c
 - 
			
                    [29]
                
			
(29) Liu, Y.; Wang, D.; Peng, Q.; Chu, D.; Liu, X.; Li, Y. Inorganic Chemistry 2011, 50 (12), 5841. doi: 10.1021/ic2009013
 - 
			
                    [30]
                
			
(30) Kong, X. Y.; Ding, Y.; Yang, R. S.; Wang, Z. L. Science 2004, 303 (5662), 1348. doi: 10.1126/science.1092356
 - 
			
                    [31]
                
			
(31) Huang, K. J.; Yan, L.; Xie, C. S. Materials Review 2010, 24(6), 7. [黄开金, 闫里, 谢长生. 材料导报: 综述篇, 2010, 24(6), 7.]
 - 
			
                    [32]
                
			
(32) Hu, H. F.; He, T. Acta Phys. -Chim. Sin. 2015, 31 (7), 1421. [胡海峰, 贺涛, 物理化学学报, 2015, 31 (7), 1421] doi: 10.3866/PKU.WHXB201504221
 - 
			
                    [33]
                
			
(33) Akgun, M. C.; Afal, A.; Unalan, H. E. Journal of Materials Research 2012, 27 (18), 2401. doi: 10.1557/jmr.2012.258
 - 
			
                    [34]
                
			
(34) Wang, Y. X.; Fan, X. Y.; Yu, X. China Ceramics 2008, 44 (12), 26. [王艳香, 范学运, 余熙. 中国陶瓷, 2008, 44 (12), 26.]
 - 
			
                    [35]
                
			
(35) Greene, L. E.; Yuhas, B. D.; Law, M.; Zitoun, D.; Yang, P.Inorganic Chemistry 2006, 45 (19), 7535. doi: 10.1021/ic0601900
 - 
			
                    [36]
                
			
(36) Su, Z.W.; Fang, Y.; Li, Z.; Xu, K. China Ceramics 2013, 49(6), 13. [苏照伟, 方莹, 李镇, 徐坤. 中国陶瓷, 2013, 49 (6), 13.]
 - 
			
                    [37]
                
			
(37) Illy, B. N.; Ingham, B.; Ryan, M. P. Crystal Growth & Design 2010, 10 (3), 1189. doi: 10.1021/cg901156z
 - 
			
                    [38]
                
			
(38) Yang, J. H.; Wang, J.; Li, X. Y.; Lang, J. H.; Liu, F. Z.; Yang, L. L.; Zhai, H. J.; Gao, M.; Zhao, X. T. Journal of Alloys and Compounds 2012, 528, 28. doi: 10.1016/j.jallcom.2012.02.162
 - 
			
                    [39]
                
			
(39) Pawar, R. C.; Choi, D. H.; Lee, J. S.; Lee, C. S. Materials Chemistry and Physics 2015, 151, 167. doi: 10.1016/j.matchemphys.2014.11.051
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Zhiwen HU , Ping LI , Yulong YANG , Weixia DONG , Qifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172
 - 
				[2]
				
Bing Shen , Tongwei Yuan , Wenshuang Zhang , Yang Chen , Jiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490
 - 
				[3]
				
Bowen Liu , Jianjun Zhang , Han Li , Bei Cheng , Chuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121
 - 
				[4]
				
Shuting Zhuang , Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010
 - 
				[5]
				
Xin Zhou , Yiting Huo , Songyu Yang , Bowen He , Xiaojing Wang , Zhen Wu , Jianjun Zhang . Understanding the effect of pH on protonated COF during photocatalytic H2O2 production by femtosecond transient absorption spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(12): 100160-0. doi: 10.1016/j.actphy.2025.100160
 - 
				[6]
				
Haoying ZHAI , Lanzong WEN , Wenjie LIAO , Qin LI , Wenjun ZHOU , Kun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320
 - 
				[7]
				
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
 - 
				[8]
				
Junqing WEN , Ruoqi WANG , Jianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243
 - 
				[9]
				
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
 - 
				[10]
				
Yajin Li , Huimin Liu , Lan Ma , Jiaxiong Liu , Dehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005
 - 
				[11]
				
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
 - 
				[12]
				
Yongqing Xu , Yuyao Yang , Mengna Wu , Xiaoxiao Yang , Xuan Bie , Shiyu Zhang , Qinghai Li , Yanguo Zhang , Chenwei Zhang , Robert E. Przekop , Bogna Sztorch , Dariusz Brzakalski , Hui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003
 - 
				[13]
				
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020
 - 
				[14]
				
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054
 - 
				[15]
				
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
 - 
				[16]
				
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064
 - 
				[17]
				
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027
 - 
				[18]
				
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
 - 
				[19]
				
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
 - 
				[20]
				
Tong WANG , Qinyue ZHONG , Qiong HUANG , Weimin GUO , Xinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(1)
 - Abstract views(814)
 - HTML views(92)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: