Citation: HU Hai-Feng, HE Tao. Controllable Modulation of Morphology and Photocatalytic Performance of ZnO Nanomaterials via pH Adjustment[J]. Acta Physico-Chimica Sinica, ;2016, 32(2): 543-550. doi: 10.3866/PKU.WHXB201511194 shu

Controllable Modulation of Morphology and Photocatalytic Performance of ZnO Nanomaterials via pH Adjustment

  • Corresponding author: HE Tao, 
  • Received Date: 14 October 2015
    Available Online: 18 November 2015

    Fund Project: 国家科技部国际合作司(2015DFG62610)资助项目 (2015DFG62610)

  • ZnO microstructures and nanostructures with controlled-morphology were synthesized by the hydrothermal method. All samples were prepared using precursors at different pH values and then annealed at 500 ℃ for 2 h. The samples were characterized by X-ray diffraction (XRD) patterns, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-Vis), and BET specific surface area measurement. All samples were confirmed by XRD to be wurtzite ZnO. As the pH value of the precursor increased, sheet-like ZnO disappeared and rod-like ZnO was produced. The major surfaces of sheet-like and rod-like ZnO were polar and nonpolar crystal faces, respectively. At pH 6.5, Cl- was adsorbed onto the (002) polar face and inhibited the growth along the polar crystal face ({Zn2+}crystal surface). A microporous sheet ZnO was formed by annealing the obtained sheet-like Zn5(OH)8Cl2·H2O. When OH- was added into the precursor, Zn(OH)42- was generated via coordination with Zn2+, which was adsorbed onto the (002) polar face and promoted growth along the polar crystal face. Rod-like ZnO was thus produced. The obtained ZnO could photocatalytically reduce CO2 under illumination. Sheet-like ZnO exhibited better photocatalytic performance than rod-like ZnO. This may be because the polar crystal face shows better photocatalytic activity than the unpolar crystal face.
  • 加载中
    1. [1]

      (1) Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Nature 1979, 277 (5698), 637.

    2. [2]

      (2) Qin, G. H.; Zhang, Y.; Ke, X. B.; Tong, X. L.; Sun, Z.; Liang, M.; Xue, S. Applied Catalysis B: Environmental 2013, 129, 599.

    3. [3]

      (3) Hemminger, J. C.; Carr, R.; Somorjai, G. A. Chemical Physics Letters 1978, 57 (1), 100.

    4. [4]

      (4) Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S. Physical Chemistry Chemical Physics 2000, 2 (11), 2635.

    5. [5]

      (5) Guan, G. Q.; Kida, T.; Harada, T.; Isayama, M.; Yoshida, A.Applied Catalysis A: General 2003, 249 (1), 11.

    6. [6]

      (6) Teramura, K.; Okuoka, S.i.; Tsuneoka, H.; Shishido, T.; Tanaka, T. Applied Catalysis B: Environmental 2010, 96 (3-4), 565.

    7. [7]

      (7) Liu, Y. Y.; Huang, B. B.; Dai, Y.; Zhang, X. Y.; Qin, X. Y.; Jiang, M. H.; Whangbo, M. H. Catalysis Communications 2009, 11 (3), 210.

    8. [8]

      (8) Huang, Y.; Fu, M.; He, T. Acta Phys. -Chim. Sin. 2015, 31 (6), 1145. [黄艳, 傅敏, 贺涛. 物理化学学报, 2015, 31 (6), 1145.] doi: 10.3866/PKU.WHXB201504015

    9. [9]

      (9) Li, P.; Zhou, Y.; Tu, W.; Liu, Q.; Yan, S.; Zou, Z.ChemPlusChem 2013, 78 (3), 274.

    10. [10]

      (10) Li, P.; Zhou, Y.; Tu, W. G.; Wang, R.; Zhang, C. F.; Liu, Q.; Li, H. J.; Li, Z. D.; Dai, H.; Wang, J. J.; Yan, S. C.; Zou, Z. G.CrystEngComm. 2013, 15 (46), 9855.

    11. [11]

      (11) Chen, X.; Zhou, Y.; Liu, Q.; Li, Z.; Liu, J.; Zou, Z. ACS Appl. Mater. Interfaces 2012, 4 (7), 3372.

    12. [12]

      (12) Yan, S. C.; Ouyang, S. X.; Gao, J.; Yang, M.; Feng, J. Y.; Fan, X. X.; Wan, L. J.; Li, Z. S.; Ye, J. H.; Zhou, Y.; Zou, Z. G.Angewandte Chemie International Edition 2010, 49 (36), 6400. doi: 10.1002/anie.201003270

    13. [13]

      (13) Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J.; Zhu, Y. Inorganic Chemistry 2007, 46 (16), 6675. doi: 10.1021/ic062394m

    14. [14]

      (14) Chen, Y.; Zhao, H.; Liu, B.; Yang, H. Q. Applied Catalysis B: Environmental 2015, 163, 189. doi: 10.1016/j.apcatb.2014.07.044

    15. [15]

      (15) Tang, Q. L.; Luo, Q. H. The Journal of Physical Chemistry C 2013, 117 (44), 22954. doi: 10.1021/jp407970a

    16. [16]

      (16) Farias, S. A.; Longo, E.; Gargano, R.; Martins, J. B. Journal of Molecular Modeling 2013, 19 (5), 2069. doi: 10.1007/s00894-012-1636-4

    17. [17]

      (17) Pacholski, C.; Kornowski, A.; Weller, H. Angewandte Chemie International Edition 2002, 41 (7), 1188.

    18. [18]

      (18) Zhang, L. N.; Yang, H. Q.; Ma, J. H.; Li, L.; Wang, X.W.; Zhang, L. H.; Tian, S.; Wang, X. Y. Applied Physics A 2010, 100 (4), 1061. doi: 10.1007/s00339-010-5737-6

    19. [19]

      (19) Cheng, B.; Samulski, E. T. Chemical Communications 2004, (No.8), 986.

    20. [20]

      (20) Rupasinghe, R.A.T. P. Dissolution and Aggregation of ZincOxide Nanoparticles at Circumneutral pH: a Study of SizeEffects in the Presence and Absence of Citric Acid. M. S.Dissertation, University of Iowa, Iowa City, 2011.

    21. [21]

      (21) Georgiou, P.; Kolokotronis, K.; Simitzis, J. Journal of Nano Research 2009, 6, 157. doi: 10.4028/www.scientific.net/JNanoR.6

    22. [22]

      (22) Chen, D. R.; Jiao, X. L.; Cheng, G. Solid State Communications 1999, 113 (6), 363. doi: 10.1016/S0038-1098(99)00472-X

    23. [23]

      (23) Liu, H. X.; Huang, B. B.; Wang, Z. Y.; Qin, X. Y.; Zhang, X.Y.; Wei, J. Y.; Dai, Y.; Wang, P.; Whangbo, M. H. Journal of Alloys and Compounds 2010, 507 (1), 326. doi: 10.1016/j.jallcom.2010.07.192

    24. [24]

      (24) Sun, X.; Qiu, X.; Li, L.; Li, G. Inorganic Chemistry 2008, 47(10), 4146. doi: 10.1021/ic702348c

    25. [25]

      (25) Zhang, W. X.; Yanagisawa, K. Chemistry Letters 2005, 34 (8), 1170. doi: 10.1246/cl.2005.1170

    26. [26]

      (26) Zhang, W. X.; Yanagisawa, K. Chemistry of Materials 2007, 19 (9), 2329. doi: 10.1021/cm0626841

    27. [27]

      (27) Moriya, M.; Yoshikawa, K.; Sakamoto, W.; Yogo, T. Inorganic Chemistry 2009, 48 (17), 8544. doi: 10.1021/ic900864a

    28. [28]

      (28) Wang, X. B.; Cai, W. P.; Lin, Y. X.; Wang, G. Z.; Liang, C. H.Journal of Materials Chemistry 2010, 20 (39), 8582. doi: 10.1039/c0jm01024c

    29. [29]

      (29) Liu, Y.; Wang, D.; Peng, Q.; Chu, D.; Liu, X.; Li, Y. Inorganic Chemistry 2011, 50 (12), 5841. doi: 10.1021/ic2009013

    30. [30]

      (30) Kong, X. Y.; Ding, Y.; Yang, R. S.; Wang, Z. L. Science 2004, 303 (5662), 1348. doi: 10.1126/science.1092356

    31. [31]

      (31) Huang, K. J.; Yan, L.; Xie, C. S. Materials Review 2010, 24(6), 7. [黄开金, 闫里, 谢长生. 材料导报: 综述篇, 2010, 24(6), 7.]

    32. [32]

      (32) Hu, H. F.; He, T. Acta Phys. -Chim. Sin. 2015, 31 (7), 1421. [胡海峰, 贺涛, 物理化学学报, 2015, 31 (7), 1421] doi: 10.3866/PKU.WHXB201504221

    33. [33]

      (33) Akgun, M. C.; Afal, A.; Unalan, H. E. Journal of Materials Research 2012, 27 (18), 2401. doi: 10.1557/jmr.2012.258

    34. [34]

      (34) Wang, Y. X.; Fan, X. Y.; Yu, X. China Ceramics 2008, 44 (12), 26. [王艳香, 范学运, 余熙. 中国陶瓷, 2008, 44 (12), 26.]

    35. [35]

      (35) Greene, L. E.; Yuhas, B. D.; Law, M.; Zitoun, D.; Yang, P.Inorganic Chemistry 2006, 45 (19), 7535. doi: 10.1021/ic0601900

    36. [36]

      (36) Su, Z.W.; Fang, Y.; Li, Z.; Xu, K. China Ceramics 2013, 49(6), 13. [苏照伟, 方莹, 李镇, 徐坤. 中国陶瓷, 2013, 49 (6), 13.]

    37. [37]

      (37) Illy, B. N.; Ingham, B.; Ryan, M. P. Crystal Growth & Design 2010, 10 (3), 1189. doi: 10.1021/cg901156z

    38. [38]

      (38) Yang, J. H.; Wang, J.; Li, X. Y.; Lang, J. H.; Liu, F. Z.; Yang, L. L.; Zhai, H. J.; Gao, M.; Zhao, X. T. Journal of Alloys and Compounds 2012, 528, 28. doi: 10.1016/j.jallcom.2012.02.162

    39. [39]

      (39) Pawar, R. C.; Choi, D. H.; Lee, J. S.; Lee, C. S. Materials Chemistry and Physics 2015, 151, 167. doi: 10.1016/j.matchemphys.2014.11.051

  • 加载中
    1. [1]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    2. [2]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    3. [3]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    4. [4]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    8. [8]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    14. [14]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    15. [15]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    18. [18]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    19. [19]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    20. [20]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

Metrics
  • PDF Downloads(1)
  • Abstract views(418)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return