Citation: FENG Lei, HAO Jing-Cheng. Preparation and Property of Gold Nanoparticles from Muliple Self- Assembled Structures as Templates in LA/C14DMAO/H2O System[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 380-390. doi: 10.3866/PKU.WHXB201511193 shu

Preparation and Property of Gold Nanoparticles from Muliple Self- Assembled Structures as Templates in LA/C14DMAO/H2O System

  • Corresponding author: HAO Jing-Cheng, 
  • Received Date: 12 October 2015
    Available Online: 19 November 2015

    Fund Project: 国家自然科学基金(2140102006,21273134) (2140102006,21273134)山东省自然科学基金(ZR2013BQ025)资助项目 (ZR2013BQ025)

  • Rich phase behavior was observed in salt-free cationic/anionic (catanionic) surfactant mixtures of lauric acid (LA) with a nonionic surfactant, tetradecyldimethylamine oxide (C14DMAO), in water. The phase behavior and microstructures of the LA/C14DMAO/H2O system were investigated by freeze-fracture transmission electron microscope (FF-TEM), polarized optical microscope (POM), differential scanning calorimetry (DSC), rheological measurements, and 2H NMR. A variety of self-assembled microstructures were determined, including micelles (L1 phase), lamellae (Lαl phase), vesicles (Lαv phase) and gels. Using the L1 and Lαl phases as the templates, gold nanoparticles could be produced, as confirmed by transmission electron microscope (TEM) and energy dispersive spectrometer (EDS). Compared with the traditional method of preparing Au nanomaterials in aqueous solutions, this method can avoid the addition of NaBH4 as a reducing agent. The sample solution plays roles as a template and a reductant and the reduction process does not destroy the original self-assembled microstructures in the solution. Hence, by controlling the aggregate structures of the template solution, one can achieve the goal of regulating the morphology of Au nanomaterials, which provides a new path for the preparation of noble metal nanostructured materials with different shapes and structures. The results of the methyl thiazolyl tetrazolium (MTT) assay with HK-2 cells show that, as a gene carrier, spherical Au-nanoparticles prepared in a micellar phase possess the characteristics of higher loading efficiency and lower toxicity than those obtained in traditional surfactant systems, demonstrating potential applications in gene therapy.
  • 加载中
    1. [1]

      (1) Kaler, E. W.; Murthy, A. K.; Rodriguez, B. E.; Zasadzinski, J. A. N. Science 1989, 245, 1371. doi: 10.1126/science.2781283

    2. [2]

      (2) Morigaki, K.; Dallavalle, S.; Walde, P.; Colonna, S.; Luisi, P. L. J. Am. Chem. Soc 1997, 119, 292. doi: 10.1021/ja961728b

    3. [3]

      (3) Bergstrøm, M. P.; Pedersen, J. S. Langmuir 1999, 15, 2250. doi: 10.1021/la981495x

    4. [4]

      (4) Horbaschek, K. H.; Hoffmann, H.; Hao, J. J. Phys. Chem. B 2000, 104, 2781. doi: 10.1021/jp993128f

    5. [5]

      (5) Campbell, S. E.; Zhang, Z.; Friberg, S. E.; Patel, R. Langmuir 1998, 14, 590. doi: 10.1021/la9707742

    6. [6]

      (6) Horbaschek, K.; Hoffmann, H.; Thunig, C. J. Colloid Interface Sci. 1998, 206, 439. doi: 10.1006/jcis.1998.5690

    7. [7]

      (7) Hao, J.; Li, H.; Liu, W.; Hirsch, A. Chem. Commun. 2004, No. 5, 602.

    8. [8]

      (8) Song, S.; Feng, L.; Song, A.; Hao, J. J. Phys. Chem. B 2012, 116, 12850. doi: 10.1021/jp3066025

    9. [9]

      (9) Song, S.; Zheng, Q.; Song, A.; Hao, J. Langmuir 2012, 28, 219.

    10. [10]

      (10) Jiang, Y.; Geng, T.; Li, Q.; Li, G.; Ju, H. Colloids Surf. A 2014, 462, 27. doi: 10.1016/j.colsurfa.2014.08.020

    11. [11]

      (11) Ghosh, S.; Ray, A. Ind. Eng. Chem. Res. 2015, 54, 1953. doi: 10.1021/ie503697c

    12. [12]

      (12) Gao, J.; Bender, C. M.; Murphy, C. J. Langmuir 2003, 19, 9065. doi: 10.1021/la034919i

    13. [13]

      (13) Murphy, C. J.; Jana, N. R. Adv. Mater. 2002, 14, 80.

    14. [14]

      (14) Lu, C.; Wu, N.; Jiao, X.; Luo, C.; Cao, W. Chem. Commun. 2003, No. 9, 1056.

    15. [15]

      (15) Huang, X.; El-Sayed, M. A. Lasers Med. Sci. 2008, 23, 217. doi: 10.1007/s10103-007-0470-x

    16. [16]

      (16) Wei, Q.; Ji, J.; Shen, J. J. Nanosci. Nanotechnol. 2008, 8, 5708. doi: 10.1166/jnn.2008.302

    17. [17]

      (17) Xiao, J.; Qi, L. Nanoscale 2011, 3, 1383. doi: 10.1039/c0nr00814a

    18. [18]

      (18) Cai, W.; Fu, G.; Li, C.; Zhang, L.; Kan, C. Appl. Phys. A 2004, 78, 1187. doi: 10.1007/s00339-003-2202-9

    19. [19]

      (19) Loubat, A.; Lacroix, L. M.; Robert, A.; Impéror-Clerc, M.; Poteau, R.; Maron, L.; Arenal, R.; Pansu, B.; Viau, G. J. Phys. Chem. C 2015, 119, 4422. doi: 10.1021/acs.jpcc.5b00242

    20. [20]

      (20) Jana, N. R.; Gearheart, L.; Murphy, C. J. Adv. Mater. 2001, 13, 1389.

    21. [21]

      (21) Xu, L.; Feng, L.; Dong, R.; Hao, J.; Dong, S. Biomacromolecules 2013, 14, 2781. doi: 10.1021/bm400616y

    22. [22]

      (22) Teng, M.; Song, A.; Liu, L.; Hao, J. J. Phys. Chem. B 2008, 112, 1671. doi: 10.1021/jp075767t

    23. [23]

      (23) Leontidis, E. K. K.; Kyprianidou-Leodidou, T.; Bekiari, V.; Lianos, P. Langmuir 2002, 18, 3659. doi: 10.1021/la011368s

    24. [24]

      (24) Zanchet, D.; Micheel, C. M.; Parak, W. J.; Gerion, D.; Alivisatos, A. P. Nano Lett. 2001, 1, 32.

    25. [25]

      (25) Gao, H.; Kong ,Y.; Cui, D.; Ozkan, C. S. Nano Lett. 2003, 3, 471. doi: 10.1021/nl025967a

    26. [26]

      (26) Wu, H.; Liu, H.; Tan, S.; Yu, J.; Zhao, W.; Wang, L.; Liu, Q. J. Phys. Chem. C 2014, 118, 26825. doi: 10.1021/jp5083032

    27. [27]

      (27) Maeda, H. Colloids Surf. A 1996, 109, 263. doi: 10.1016/0927-7757(95)03459-5

    28. [28]

      (28) Song, A.; Dong, S.; Jia, X.; Hao, J.; Liu, W.; Liu, T. Angew. Chem. Int. Edit. 2005, 117, 4086.

    29. [29]

      (29) Hoffmann, H. Adv. Mater. 1994, 6, 116.

    30. [30]

      (30) Wang, L.; Liu, J.; Exarhos, G. J.; Flanigan, K. Y.; Bordia, R. J. Phys. Chem. B 2000, 104, 2810. doi: 10.1021/jp993058c

    31. [31]

      (31) Li, Q.; Li, T.; Wu, J. J. Phys. Chem. B 2000, 104, 9011. doi: 10.1021/jp000336v

    32. [32]

      (32) Kondo, Y.; Miyazawa, H.; Sakai, H.; Abe, M.; Yoshino, N. J. Am. Chem. Soc. 2002, 124, 6516. doi: 10.1021/ja0178564

    33. [33]

      (33) Medronho, B.; Shafaei, S.; Szopko, R.; Miguel, M. G.; Olsson, U.; Schmidt, C. Langmuir 2008, 24, 6480. doi: 10.1021/la800326a

    34. [34]

      (34) Liu, C.; Hao, J.; Wu, Z. J. Phys. Chem. B 2010, 114, 9795.

    35. [35]

      (35) Alexandridis, P.; Zhou, D.; Khan, A. Langmuir 1996, 12, 2690. doi: 10.1021/la951025s

    36. [36]

      (36) Niu, J.; Wang, D.; Qin, H.; Xiong, X.; Tan, P.; Li, Y.; Liu, R.; Lu, X.; Wu, J.; Zhang, T.; Ni, W.; Jin, J. Nature Commun. 2014, 5, 3313.

    37. [37]

      (37) Pileni, M. P. Nat. Mater. 2003, 2, 145. doi: 10.1038/nmat817

    38. [38]

      (38) Dong, R.; Liu, W.; Hao, J. Accounts Chem. Res. 2012, 45, 504. doi: 10.1021/ar200124g

  • 加载中
    1. [1]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    3. [3]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    4. [4]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    5. [5]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    6. [6]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    7. [7]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    8. [8]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    9. [9]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    10. [10]

      Chengxiao ZhaoZhaolin LiDongfang WuXiaofei Yang . SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2026, 42(1): 100149-0. doi: 10.1016/j.actphy.2025.100149

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    13. [13]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    14. [14]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    15. [15]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    16. [16]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    17. [17]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    18. [18]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    19. [19]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    20. [20]

      Binbin LiuYang ChenTianci JiaChen ChenZhanghao WuYuhui LiuYuhang ZhaiTianshu MaChanglei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-0. doi: 10.1016/j.actphy.2025.100128

Metrics
  • PDF Downloads(0)
  • Abstract views(535)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return