Citation: LI Ya-Fang, CHENG Bo-Wen, SHEN Chao, ZHENG Xu-Ming, XUE Jia-Dan, DU Yong, TANG Wen-Jian. Investigation of the Influence of Nitro-Substitution on the Reaction of Biphenyl-Nitrene and Nitrenium Ion by Transient Absorption and Resonance Raman Spectroscopic Techniques[J]. Acta Physico-Chimica Sinica, ;2016, 32(2): 415-421. doi: 10.3866/PKU.WHXB201511191 shu

Investigation of the Influence of Nitro-Substitution on the Reaction of Biphenyl-Nitrene and Nitrenium Ion by Transient Absorption and Resonance Raman Spectroscopic Techniques

  • Corresponding author: XUE Jia-Dan,  DU Yong, 
  • Received Date: 21 July 2015
    Available Online: 17 November 2015

    Fund Project: 国家自然科学基金(21202032,21205110) (21202032,21205110)浙江理工大学科研启动基金(1206841-Y) (1206841-Y)浙江理工大学化学工程与技术浙江省重中之重(一级)学科开放基金(YR2013009) (一级)学科开放基金(YR2013009)浙江省自然科学基金(LY16B030008)资助项目 (LY16B030008)

  • Arylnitrenes and arylnitrenium ions are both short-lived intermediates that are highly reactive. In this work, nanosecond transient absorption and transient resonance Raman spectroscopic measurements were used to detect and identify the intermediates generated from the singlet 4'-nitro-4-biphenylnitrene after photolysis of the corresponding aryl azide in acetonitrile and aqueous solution. Combined with the density functional theory (DFT) simulation results, the structural and electronic characteristics of the above experimental intermediates were specified. The spectral results indicate that in aprotic solvents (such as acetonitrile), the singlet 4'-nitro-4-biphenylnitrene undergoes intersystem crossing (ISC) to the triplet nitrene. In contrast, in a protic solvent (such as the mixed aqueous solution used in this work), the singlet 4'-nitro-4-biphenylnitrene can be protonated to produce the nitrenium ion. Compared with its un-substituted counterpart, the nitro substitution has little influence on the ISC reaction pathway of the singlet 4-biphenylnitrene. With regard to the un-substituted nitrenium ion, the nitro group decreases its reactivity towards water and azide anion, while accelerating its reaction rate towards 2'-deoxyguanosine based on the different quench reaction rates between the nitrenium ion and azide anion/2'-deoxyguanosine. These results provide rich structural and kinetic information about related arylnitrenes and arylnitrenium ions, providing insights into their photolysis mechanism(s) through electronic and vibrational spectroscopic techniques.
  • 加载中
    1. [1]

      (1) Panov, M. S.; Voskresenska, V. D.; Ryazantsev, M. N.; Tarnovsky, A. N.; Wilson, R. M. J. Am. Chem. Soc. 2013, 135(51), 19167. doi: 10.1021/ja405637b

    2. [2]

      (2) Voskresenska, V.; Marshall Wilson, R.; Panov, M.; Tarnovsky, A. N.; Krause, J. A.; Vyas, S.; Winter, A. H.; Hadad, C. M.J. Am. Chem. Soc. 2009, 131 (32), 11535. doi: 10.1021/ja902224m

    3. [3]

      (3) Breslow, D. S. Industrial Applications. In Azides and Nitrenes; Scriven, E. F. V. Ed.; Academic Press: New York, 1984; pp491-521.

    4. [4]

      (4) Meijer, E.W.; Nijhuis, S.; Van Vroonhoven, F. C. B. M. J. Am. Chem. Soc. 1988, 110 (21), 7209. doi: 10.1021/ja00229a043

    5. [5]

      (5) Niino, H.; Sato, T.; Yabe, A. Appl. Phys. A 1999, 69 (6), 605 doi: 10.1007/s003390051039

    6. [6]

      (6) Cai, S. X.; Glenn, D. J..; Keana, J. F.W. J. Org. Chem. 1992, 57 (4), 1299. doi: 10.1021/jo00030a046

    7. [7]

      (7) McClelland, R. A.; Gadosy, T. A.; Ren, D. Can. J. Chem. 1998, 76 (10), 1327. doi: 10.1139/v98-187

    8. [8]

      (8) Platz, M. S. Nitrene. In Reactive Intermediate Chemistry; Moss, R. A., Platz, M. S., Jones, M., Jr. Eds.; JohnWiley& Sons: Hoboken, New Jersey, 2004; pp 501-559.

    9. [9]

      (9) Gritsan, N. P.; Tigelaar, D.; Platz, M. S. J. Phys. Chem. A.1999, 103 (23), 4465. doi: 10.1021/jp990004u

    10. [10]

      (10) Ren, D.; McClelland, R. A. Can. J. Chem. 1998, 76 (1), 78. doi: 10.1139/v97-204

    11. [11]

      (11) McClelland, R. A.; Kahley, M. J.; Davidse, P. A.; Hadzialic, G.J. Am. Chem. Soc. 1996, 118 (20), 4794. doi: 10.1021/ja954248d

    12. [12]

      (12) Talaska, G.; Al-Juburi, A. Z. S. S.; Kadlubar, F. F. Proc. Natl. Acad. Sci. U. S. A. 1991, 88 (12), 5350. doi: 10.1073/pnas.88.12.5350

    13. [13]

      (13) Gritsan, N. P.; Gudmundsdottir, A. D.; Tigelaar, D.; Zhu, Z. D.; Karney, W. L.; Hadad, C. M.; Platz, M. S. J. Am. Chem. Soc. 2001, 123 (9), 1951. doi: 10.1021/ja9944305

    14. [14]

      (14) Ruane, P. H.; McClelland, R. A. Can. J. Chem. 2001, 79 (12), 1875. doi: 10.1139/v01-178

    15. [15]

      (15) Brown, B. R.; Yielding, L.W.; White, Jr.W. E.; Mutat. Res. 1980, 70 (1), 17. doi: 10.1016/0027-5107(80)90054-8

    16. [16]

      (16) Ouyang, B.; Xue, J. D.; Zheng, X. M.; Fang, W. H. J. Chem. Phys. 2014, 140 (19), 194305. doi: 10.1063/1.4875807

    17. [17]

      (17) Li, D.; Xue, J. D.; Zheng, X. M. Acta Phys. -Chim. Sin. 2014, 30 (12), 2216. [李丹, 薛佳丹, 郑旭明. 物理化学学报, 2014, 30 (12), 2216.] doi: 10.3866/PKU.WHXB201410221

    18. [18]

      (18) Phillips, D. L.; Kwok, W. M.; Ma, C. An Introduction to Time-Resolved Resonance Raman Spectroscopy and Its Applicationto Reactive Intermediates. In Reviews of Reactive Intermediate Chemistry; Platz, M. S., Moss, R. A., Jones, M., Jr. Eds.; JohnWiley & Sons: Hoboken, New Jersey, 2007; pp 123-182.

    19. [19]

      (19) Becke, A. D. J. Chem. Phys. 1993, 98 (7), 5648. doi: 10.1063/1.464913

    20. [20]

      (20) Schä efer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97(4), 2571. doi: 10.1063/1.463096

    21. [21]

      (21) Perdew, J. P.; Burke, K.; Wang, Y. Phys. Rev. B 1996, 54 (23), 16533. doi: 10.1103/PhysRevB.54.16533

    22. [22]

      (22) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90 (2), 1007. doi: 10.1063/1.456153

    23. [23]

      (23) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Version 7.0; Gaussian Inc.:Wallingford CT, 2009.

    24. [24]

      (24) Tsao, M. L.; Gritsan, N.; James, T. R.; Platz, M. S. J. Am. Chem. Soc. 2003, 125 (31), 9343 doi: 10.1021/ja0351591

    25. [25]

      (25) McClelland, R. A.; Davidse, P. A.; Hadzialic, G. J. Am. Chem. Soc. 1995, 117 (14), 4173. doi: 10.1021/ja00119a035

    26. [26]

      (26) McClelland, R. A.; Ahmad, A.; Dicks, A. P.; Licence, V. E.J. Am. Chem. Soc. 1999, 121 (14), 3303. doi: 10.1021/ja9836702

    27. [27]

      (27) Chan, P. Y.; Kwok, W. M.; Lam, S. K.; Chiu, P.; Phillips, D. L.J. Am. Chem. Soc. 2005, 127 (23), 8246. doi: 10.1021/ja0505651

    28. [28]

      (28) Xue, J.; Chan, P. Y.; Du, Y.; Guo, Z.; Chung, C.W. Y.; Toy, P.H.; Phillips, D. L. J. Phys. Chem. B 2007, 111 (44), 12676. doi: 10.1021/jp074778j

    29. [29]

      (29) Gritsan, N. P.; Platz, M. S. Chem. Rev. 2006, 106 (9), 3844. doi: 10.1021/cr040055+

  • 加载中
    1. [1]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    2. [2]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    3. [3]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    4. [4]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    5. [5]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    6. [6]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    7. [7]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    8. [8]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    9. [9]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    10. [10]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    11. [11]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    12. [12]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    13. [13]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    15. [15]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    16. [16]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    17. [17]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    18. [18]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    19. [19]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    20. [20]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

Metrics
  • PDF Downloads(0)
  • Abstract views(616)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return