Citation: LU Ye-Chang, LI Wen-Hong, ZHANG Yong-Qiang, LI Xue-Feng, DONG Jin-Feng. In-situ Viscosity of Hydrolyzed Polyacrylamides and Surfactant Worm-Like Micelle Solutions in Microscale Capillaries[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 365-372. doi: 10.3866/PKU.WHXB201511102
-
Hydrolyzed polyacrylamides (HPAMs) are shear-thinning polymers and have wide application in enhanced oil recovery (EOR), whereas worm-like micelles (WLMs) are known as “living polymers”, which can be constructed by the self-assembly of surfactant molecules. Here, a series of experiments were conducted on the fluid behavior of HPAMs and worm-like micelles in microscale capillaries with radii from 1 to 10 μm. The results show that the size of capillary has a decisive effect on the in-situ viscosity of the polymer aqueous phase. It was observed that the shear thinning effect of HPAMs is more pronounced in smaller size of capillaries, where the non-Newtonian polymer flow turns into the Newtonian flow. Evidences from filtration with a microporous filter and transmission electron microscopy (TEM) reveal that the polymer network was broken down when entering into the capillary. Conversely, WLMs can maintain their bulk viscosity to a wide extent. We assume that surfactant molecules may reassemble their aggregates and recover their network in-situ. The results suggest that WLMs have a much lower viscosity, but display similar thickening power compared with large polymers in the low or ultra-low permeability reservoirs.
-
-
[1]
(1) Lake, L. Enhanced Oil Recovery; Prentice Hall: New Jersey, 1989; pp 2–16, 43–92, 317–353.
-
[2]
(2) Buchgraber, M.; Clemens, T.; Castanier, L. M.; Kovscek, A. R. SPE Reservoir Eval. Eng. 2011, 14, 269. doi: 10.2118/122400-PA
-
[3]
(3) Vizika, O.; Avraam, D. G.; Payatakes, A. C. J. Colloid Interface Sci. 1994, 165, 386. doi: 10.1006/jcis.1994.1243
-
[4]
(4) Jackson, G. T.; Balhoff, M. T.; Huh, C.; Delshad, M. J. Pet. Sci. Eng. 2011, 78, 86. doi: 10.1016/j.petrol.2011.05.007
-
[5]
(5) Zhang, J.; Wang, S.; Lu, X.; He, X. Pet. Sci. 2011, 8, 79. doi: 10.1007/s12182-011-0118-0
-
[6]
(6) Chauveteau, G. J. Rheol. 1982, 26, 111. doi: 10.1122/1.549660
-
[7]
(7) Gramain, P.; Myard, P. Macromolecules 1980, 14, 180.
-
[8]
(8) Darwish, M. I. M.; McCray, J. E.; Currie, P. K.; Zitha, P. L. J. Groud Water Monitoring & Remediation 2003, 23, 92.
-
[9]
(9) Wang, W.; Yue, X.; Chen, Y. J. Dispersion Sci. Technol. 2013, 34, 639. doi: 10.1080/01932691.2012.686246
-
[10]
(10) Gao, H. W.; Burchfield, T. E. SPE Reservoir Eng. 1995, 10, 129. doi: 10.2118/25453-PA
-
[11]
(11) de Souza Mendes, P. R.; Dutra, E. S. S.; Siffert, J. R. R.; Naccache, M. F.J. Non-Newtonian Fluid Mech. 2007, 145, 30.
-
[12]
(12) Srivastava, N.; Burns, M. A. Anal. Chem. 2006, 78, 1690. doi: 10.1021/ac0518046
-
[13]
(13) Quintella, E. F.; Souza Mendes, P. R.; Carvalho, M. S. J. Non-Newtonian Fluid Mech. 2007, 147, 117. doi: 10.1016/j.jnnfm.2007.06.009
-
[14]
(14) Chen, C.; Gao, C.; Zhuang, L.; Li, X.; Wu, P.; Dong, J.; Lu, J. Langmuir 2010, 26, 9533. doi: 10.1021/la100105f
-
[15]
(15) Chen, C.; Zhuang, L.; Li, X.; Dong, J.; Lu, J. Langmuir 2012, 28, 1330. doi: 10.1021/la204207s
-
[16]
(16) Washburn, E. W. Phys. Rev. 1921, 17, 273. doi: 10.1103/PhysRev.17.273
-
[17]
(17) Zorin, Z. M.; Churaev, N. V. Adv. Colloid Interface Sci. 1992, 40, 85. doi: 10.1016/0001-8686(92)80072-6
-
[18]
(18) Zhmud, B. V.; Tiberg, F.; Hallstensson, K. J. Colloid Interface Sci. 2000, 228, 263. doi: 10.1006/jcis.2000.6951
-
[19]
(19) Martic, G.; Gentner, F.; Seveno, D.; Coulon, D.; Coninck, J. D.; Blake, T. D. Langmuir 2002, 18, 7971. doi: 10.1021/la020068n
-
[20]
(20) Blake, T. D.; Coninck, J. D. Colloids Surf. A 2004, 250, 395. doi: 10.1016/j.colsurfa.2004.05.024
-
[21]
(21) Digilov, R. M. Langmuir 2008, 24, 13663. doi: 10.1021/la801807j
-
[22]
(22) Zhou, W.; Gao, C.; Lu, Y.; Wang, Z.; Wu, P.; Li, X.; Dong, J. Energy Sources, Part A, 2011. doi: 10.1080/15567036.2011.585381
-
[23]
(23) Zhou, W.; Lu, Y.; Gao, C.; Li, W.; Zhang, Y.; Li, X.; Chen, C.; Dong, J. Energy Fuels 2013, 27, 717.
-
[24]
(24) Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory Chemicals; Elsevier Science: Burlington, 2003; p 185.
-
[25]
(25) Lu, Y.; Zhou, T.; Fan, Q.; Dong, J.; Li, X. J. Colloid Interface Sci. 2013, 412, 107. doi: 10.1016/j.jcis.2013.09.014
-
[26]
(26) Churaev, N. V.; Ershov, A. P.; Zorin, Z. M. J. Colloid Interface Sci. 1996, 177, 589. doi: 10.1006/jcis.1996.0073
-
[27]
(27) Churaev, N. V.; Ershov, A. P.; Esipova, N. E.; Hill, R. M.; Sobolev, V. D.; Zorin, Z. M. Langmuir 2001, 17, 1349. doi: 10.1021/la000864y
-
[28]
(28) Ershov, A. P.; Zorin, Z. M.; Sobolev, V. D.; Churaev, N. V. Colloid J. 2001, 63, 290. doi: 10.1023/A:1016687925562
-
[29]
(29) Bird, R. B.; Armstrong, R. C.; Hassager, O. Fluid Mechanics. In Dynamics of Polymeric Liquids, Vol. 1; Wiley: New York, 1987; pp 169–179.
-
[1]
-
-
[1]
Yujia Luo , Yunpeng Qi , Huiping Xing , Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037
-
[2]
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
-
[3]
Zhilian Liu , Wengui Wang , Hongxiao Yang , Yu Cui , Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012
-
[4]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[5]
Zhangshu Wang , Xin Zhang , Jixin Han , Xuebing Fang , Xiufeng Zhao , Zeyu Gu , Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056
-
[6]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[7]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[8]
Yanhui Sun , Junmin Nan , Guozheng Ma , Xiaoxi Zuo , Guoliang Li , Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023
-
[9]
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
-
[10]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[11]
Yongmei Chen , Lidan Zhang , Shunlai Li , Chunting Zhang , Meng Cui , Qinghong Xu , Lan Jin , Chunchuang Li , Zhi Lv . Development of a National First-Class Course of “University Chemistry Experiment” Based on MOOCs. University Chemistry, 2024, 39(7): 8-12. doi: 10.3866/PKU.DXHX202404017
-
[12]
Nuo Zhang , Xiaojun Sun , Hongmin Ma , Yan Li , Xiang Ren , Dan Wu , Chuannan Luo , Qin Wei . Construction and Practice of National Experimental Teaching Demonstration Center of Applied Chemistry. University Chemistry, 2024, 39(7): 116-120. doi: 10.12461/PKU.DXHX202405031
-
[13]
Jibin Miao , Changjie Mao , Baokang Jin . Exploration and Practice of Virtual and Real Combination Practical Curriculum During the Construction of the National Demonstration Center for Experimental Education: A Case Study of the National Demonstration Center for Experimental Chemistry & Chemical Engineering Education (Anhui University). University Chemistry, 2024, 39(7): 106-109. doi: 10.12461/PKU.DXHX202405021
-
[14]
Jie Li , Rong Lai , Xianfang Xu , Houjin Li , Hongyan Chen , Fang Zhu . Exploration and Practice in the Construction of the National Demonstration Center for Experimental Chemistry Education: A Case Study of Sun Yat-sen University. University Chemistry, 2024, 39(7): 223-229. doi: 10.12461/PKU.DXHX202406054
-
[15]
Yonghong Ruan , Yuhua Weng , Pingping Wu , Yinyun Lü , Zhaobin Chen , Zhiqiang Dong , Yiru Wang , Huijun Zhang , Lina Wu , Ruming Yuan , Yanping Ren , Xiaoyu Cao , Shunliu Deng . Deepening the Reform of Experimental Teaching System and Promoting the High Quality Development of National Demonstration Center for Experimental Education: Construction and Achievements of National Demonstration Center for Experimental Chemistry Education (Xiamen University). University Chemistry, 2024, 39(7): 237-246. doi: 10.12461/PKU.DXHX202406096
-
[16]
Wei Zhang , Kunying Xing , Wei Li , Yan Geng , Bo Tang . Construction and Practice of National Experimental Teaching Demonstration Center of Chemistry (Shandong Normal University). University Chemistry, 2024, 39(7): 20-25. doi: 10.12461/PKU.DXHX202404059
-
[17]
Haibo Zhang , Yuwen Liu , Qiong Ding , Chi Huang , Faqiong Zhao , Jinping Zhou . The Construction of National Demonstration Center for Experimental Chemistry Education and the Practice of Top-Notch Innovative Talent Cultivation. University Chemistry, 2024, 39(7): 82-92. doi: 10.12461/PKU.DXHX202405012
-
[18]
Weihong Li , Hao Zhao , Qihan Zhang , Tian Li , Yingxia Wang . Promoting the Development of the National Demonstration Center for Experimental Chemistry Education to Foster Innovative Talent. University Chemistry, 2024, 39(7): 153-159. doi: 10.12461/PKU.DXHX202405064
-
[19]
Yongwen Shen , Wei Wang , Qinghua Feng , Jingfeng Lan , Guangnong Lu , Xiaolong Li , Liu Yang , Xiangyang Xu , E Yu , Li Wu , Xinping Hui , Yongmin Liang . Continuous Construction of National Demonstration Center for Experimental Education Based on Innovative Talent Training. University Chemistry, 2024, 39(7): 172-179. doi: 10.12461/PKU.DXHX202405083
-
[20]
Yan Su , Yuzhen Pan , Fuping Tian , Xiuyun Wang , Tieqi Xu , Yongce Zhang , Miao Cui , Wenfeng Jiang . Construction and Practice of the National Chemical Experimental Teaching Demonstration Center under the Background of Digital Education. University Chemistry, 2024, 39(7): 218-222. doi: 10.12461/PKU.DXHX202406001
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(346)
- HTML views(22)