Citation: LI Shu-Shuang, TAO Lei, ZHANG Qi, LIU Yong-Mei, CAO Yong. Recent Advances in Nano-Gold-Catalyzed Green Synthesis and Clean Reactions[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 61-74. doi: 10.3866/PKU.WHXB201511101 shu

Recent Advances in Nano-Gold-Catalyzed Green Synthesis and Clean Reactions

  • Corresponding author: CAO Yong, 
  • Received Date: 23 September 2015
    Available Online: 9 November 2015

    Fund Project: 国家自然科学基金(21273044,21473035) (21273044,21473035)高等学校博士学科点专项科研基金(2012007000011) (2012007000011)中石化校企联合基金(X514005) (X514005)上海市科学技术委员会(08DZ2270500,12ZR1401500)资助项目 (08DZ2270500,12ZR1401500)

  • There has been a surge of interest in using supported gold catalysts in green synthesis and clean reactions. Complementary to their traditional platinum-group metal counterparts, catalysis using nano-gold offers a unique opportunity to obtain target products in high yields, control the chemoselectivity, and access more complex organic molecules in a compact, atom- and step-efficient way. Therefore, it has emerged as a hot topic in the field of green catalysis. This review summarizes our research progress in the area of nano-Aucatalyzed green reactions and their versatility, application in clean chemical synthesis, especially for the construction of N-containing compounds as well as valorization of biomass-derived feedstocks via goldcatalyzed transformations.
  • 加载中
    1. [1]

      (1) Sheldon, R. A.; Arends, I.; Hanefeld, U. Green Chemistry and Catalysis; Wiley-VCH: Weinheim, 2007.

    2. [2]

      (2) Bond, G. C.; Louis, C.; Thompson, D. T. Catalysis by Gold; Imperial College Press: London, 2006.

    3. [3]

      (3) Palfray, L. Bull. Soc. Chim. Fr. 1945, 12, 692.

    4. [4]

      (4) Chambers, R.; Boudart, M. J. Catal. 1966, 5 (3), 517. doi: 10.1016/S0021-9517(66)80070-2

    5. [5]

      (5) Bond, G. C.; Sermon, P. A.; Webb, G.; Buchanan, D. A.; Wells, P. B. J. Chem. Soc. Chem. Commun. 1973, No. 13, 444.

    6. [6]

      (6) Bond, G. C.; Sermon, P. A. Gold Bull. 1973, 6 (4), 102. doi: 10.1007/BF03215018

    7. [7]

      (7) Haruta, M.; Kohayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 2, 405.

    8. [8]

      (8) Rodriguez, J. A.; Ma, S.; Liu, P.; Hrbek, J.; Evans, J.; Pérez, M. Science 2007, 318 (5857), 1757. doi: 10.1126/science.1150038

    9. [9]

      (9) Ueda, A.; Oshima, T.; Haruta, M. Appl. Catal. B 1997, 12 (2–3), 81. doi: 10.1016/S0926-3373(96)00069-0

    10. [10]

      (10) Hayashi, T.; Tanaka, K.; Haruta, M. J. Catal. 1998, 178 (2), 566. doi: 10.1006/jcat.1998.2157

    11. [11]

      (11) Mineral Commodity Summaries 2015, U.S. Geological Survey: Reston, VA, 2015.

    12. [12]

      (12) Butler, J. Platinum 2012 Interim Review; Johnson Matthey: Royston, U.K., 2012.

    13. [13]

      (13) Prati, L.; Rossi, M. J. Catal. 1998, 176 (2), 552. doi: 10.1006/jcat.1998.2078

    14. [14]

      (14) Biella, S.; Prati, L.; Rossi, M. J. Catal. 2002, 206 (2), 242. doi: 10.1006/jcat.2001.3497

    15. [15]

      (15) Landon, P.; Collier, P. J.; Papworth, A. J.; Kiely, C. J.; Hutchings, G. J. Chem. Commun. 2002, No. 18, 2058.

    16. [16]

      (16) Corma, A.; Serna, P. Science 2006, 313 (5785), 332. doi: 10.1126/science.1128383

    17. [17]

      (17) Corma, A.; Garcia, H. Chem. Soc. Rev. 2008, 37 (9), 2096. doi: 10.1039/b707314n

    18. [18]

      (18) Stratakis, M.; Garcia, H. Chem. Rev. 2012, 112 (8), 4469. doi: 10.1021/cr3000785

    19. [19]

      (19) Pina, C. D.; Falletta, E.; Rossi, M. Chem. Soc. Rev. 2012, 41 (1), 350. doi: 10.1039/C1CS15089H

    20. [20]

      (20) Oliver-Meseguer, J.; Cabrero-Antonino, J. R.; Domínguez, I.; Leyva-Pérez, A.; Corma, A. Science 2012, 338 (6113), 1452. doi: 10.1126/science.1227813

    21. [21]

      (21) Wittstock, A.; Bäumer, M. Accounts Chem. Res. 2014, 47 (3), 731. doi: 10.1021/ar400202p

    22. [22]

      (22) Liu, X.; He, L.; Liu, Y, M.; Cao, Y. Accounts Chem. Res. 2014, 47 (3), 793. doi: 10.1021/ar400165j

    23. [23]

      (23) Yamazoe, S.; Koyasu, K.; Tsukuda, T. Accounts Chem. Res. 2014, 47 (3), 816. doi: 10.1021/ar400209a

    24. [24]

      (24) Adams, J. P.; Paterson, J. R. J. Chem. Soc., Perkin Trans. 1 2000, No. 22, 3695.

    25. [25]

      (25) Haber, F.; Elektrochem, Z. Angew. Phys. Chem. 1898, 22, 506.

    26. [26]

      (26) Kabalka, G. W.; Varma, R. S. In Comprehensive Organic Synthesis, Vol. 8; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; pp 363–388.

    27. [27]

      (27) He, L.; Wang, L. C.; Sun, H.; Ni, J.; Cao, Y.; He, H. Y.; Fan, K. N. Angew. Chem. Int. Edit. 2009, 48 (50), 9538. doi: 10.1002/anie.200904647

    28. [28]

      (28) Liu, L. Q.; Qiao, B. T.; Chen, Z. J.; Zhang, J.; Deng, Y. Q. Chem. Commun. 2009, No. 6, 653.

    29. [29]

      (29) Lou, X. B.; He, L.; Qian, Y.; Liu, Y. M.; Cao, Y.; Fan, K. N. Adv. Synth. Catal. 2011, 353 (2–3), 281. doi: 10.1002/adsc.201000621

    30. [30]

      (30) Yu, L.; Zhang, Q.; Li, S. S.; Huang, J.; Liu, Y. M.; He, H. Y.; Cao, Y. ChemSusChem 2015, 8 (18), 3029. doi: 10.1002/cssc.201500869

    31. [31]

      (31) Hunger, K. Industrial Dyes: Chemistry, Properties, Applications; Wiley: Chichester, 2007.

    32. [32]

      (32) Lee, K. M.; White, T. J. Polymers 2011, 3 (3), 1447.

    33. [33]

      (33) Cusati, T.; Granucci, G.; Persico, M. J. Am. Chem. Soc. 2011, 133 (13), 5109. doi: 10.1021/ja1113529

    34. [34]

      (34) Grirrane, A.; Corma, A.; García, H. Science 2008, 322 (5908), 1661. doi: 10.1126/science.1166401

    35. [35]

      (35) Zhang, C.; Jiao, N. Angew. Chem. Int. Edit. 2010, 49 (35), 6174. doi: 10.1002/anie.201001651

    36. [36]

      (36) Liu, X.; Ye, S.; Li, H. Q.; Liu, Y. M.; Cao, Y.; Fan, K. N. Catal. Sci. Technol. 2013, 3 (12), 3200. doi: 10.1039/c3cy00533j

    37. [37]

      (37) Liu, X.; Li, H. Q.; Ye, S.; Liu, Y. M.; He, H. Y.; Cao, Y. Angew. Chem. Int. Edit. 2014, 53 (29), 7624. doi: 10.1002/anie.201404543

    38. [38]

      (38) Lindlar, H. Helv. Chim. Acta 1952, 35 (2), 446.

    39. [39]

      (39) Jia, J.; Haraki, K.; Kondo, J. N.; Domen K.; Tamaru, K. J. Phys. Chem. B 2000, 104 (47), 11153. doi: 10.1021/jp001213d

    40. [40]

      (40) Segura, Y.; López, N.; Pérez-Ramírez, J. J. Catal. 2007, 247 (7), 383.

    41. [41]

      (41) Yan, M.; Jin, T.; Ishikawa, Y.; Minato, T.; Fujita, T.; Chen, L. Y.; Bao, M.; Asao, N.; Chen, M. W.; Yamamoto, Y. J. Am. Chem. Soc. 2012, 134 (42), 17536. doi: 10.1021/ja3087592

    42. [42]

      (42) Li, S. S.; Liu, X.; Liu, Y. M.; He, H. Y.; Fan, K. N.; Cao, Y. Chem. Commun. 2014, 50 (42), 5626. doi: 10.1039/c4cc01595a

    43. [43]

      (43) Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry; Harper and Row: New York, 1987.

    44. [44]

      (44) Rybtchinski, B.; Cohen, R.; Ben-David, Y.; Martin, J. M. L.; Milstein, D. J. Am. Chem. Soc. 2003, 125 (36), 11041. doi: 10.1021/ja029197g

    45. [45]

      (45) Sridharan, V.; Suryavanshi, P. A.; Menéndez, J. C. Chem. Rev. 2011, 111 (11), 7157. doi: 10.1021/cr100307m

    46. [46]

      (46) Garcia-Mota, M.; Gómez-Diaz, J.; Novell-Leruth, G.; Vargas-Fuentes, C.; Bellarosa, L.; Bridier, B.; Pérez-Ramírez, J.; López, N. Theor. Chem. Acc. 2011, 128 (4), 663.

    47. [47]

      (47) Ren, D.; He, L.; Yu, L.; Ding, R. S.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. J. Am. Chem. Soc. 2012, 134 (42), 17592. doi: 10.1021/ja3066978

    48. [48]

      (48) Yan, M.; Jin, T.; Chen, Q.; Ho, H. E.; Fujita, T.; Chen, L. Y.; Bao, M.; Chen, M. W.; Asao, N.; Yamamoto, Y. Org. Lett. 2013, 15 (7), 1484. doi: 10.1021/ol400229z

    49. [49]

      (49) Tao, L.; Zhang, Q.; Li, S. S.; Liu, X.; Liu, Y. M.; Cao, Y. Adv. Synth. Catal. 2015, 357 (4), 753. doi: 10.1002/adsc.v357.4

    50. [50]

      (50) Gomez, S.; Peters, J. A.; Maschmeyer, T. Adv. Synth. Catal. 2002, 344 (10), 1037.

    51. [51]

      (51) Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61 (11), 3849. doi: 10.1021/jo960057x

    52. [52]

      (52) Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128 (1), 84. doi: 10.1021/ja057222n

    53. [53]

      (53) Hoffmann, S.; Nicoletti, M.; List, B. J. Am. Chem. Soc. 2006, 128 (40), 13074. doi: 10.1021/ja065404r

    54. [54]

      (54) Yamane, Y.; Liu, X. H.; Hamasaki, A.; Ishida, T.; Haruta, M.; Yokoyama, T.; Tokunga, M. Org. Lett. 2009, 11 (22), 5162. doi: 10.1021/ol902061j

    55. [55]

      (55) Artiukha, E. A.; Nuzhdin, A. L.; Bukhtiyarova, G. A.; Zaytsev, S.Y.; Plyusnin, P. E.; Shubin, Y. V.; Bukhtiyarova, V. I. Catal. Sci. Technol. 2015, 5 (10), 4741. doi: 10.1039/C5CY00964B

    56. [56]

      (56) Yang, Q.; Wang, Q. F.; Yu, Z. K. Chem. Soc. Rev. 2015, 44 (8), 2305. doi: 10.1039/C4CS00496E

    57. [57]

      (57) Yang, H. M.; Cui, X. J; Dai, X. C.; Deng, Y. Q.; Shi, F. Nat. Commun. 2015, 6, 6478. doi: 10.1038/ncomms7478

    58. [58]

      (58) Shimizu, K. Catal. Sci. Technol. 2015, 5 (3), 1412. doi: 10.1039/C4CY01170H

    59. [59]

      (59) Tang, C. H.; He, L.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. Chem. Eur. J. 2011, 17 (26), 7172. doi: 10.1002/chem.201100393

    60. [60]

      (60) He, L.; Lou, X. B.; Ni, J.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. Chem. Eur. J. 2010, 16 (47), 13965. doi: 10.1002/chem.v16.47

    61. [61]

      (61) Bi, Q. Y.; Du, X. L.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. J. Am. Chem. Soc. 2012, 134 (21), 8926. doi: 10.1021/ja301696e

    62. [62]

      (62) Bi, Q. Y.; Lin, J. D.; Liu, Y. M.; Du, X. L.; Wang, J. Q.; He, H. Y.; Cao, Y. Angew. Chem. Int. Edit. 2015, 53 (49), 13583.

    63. [63]

      (63) Reddy, P. G.; Kumar, G. D. K.; Baskaran, S. Tetrahedron Lett. 2000, 41 (47), 9149. doi: 10.1016/S0040-4039(00)01636-1

    64. [64]

      (64) Kulkarni, A.; Gianatassio, R.; Török, B. Synthesis 2011, No. 8, 1227.

    65. [65]

      (65) Yan, Z. P.; Lin, L.; Liu, S. J. Energy Fuels 2009, 23 (8), 3853. doi: 10.1021/ef900259h

    66. [66]

      (66) Du, X. L.; He, L.; Zhao, S.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. Angew. Chem. Int. Edit. 2011, 123 (34), 7961. doi: 10.1002/ange.v123.34

    67. [67]

      (67) Du, X. L.; Bi, Q. Y.; Liu, Y. M.; Cao, Y.; Fan, K. N. ChemSusChem 2011, 4 (12), 1838. doi: 10.1002/cssc.v4.12

  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    3. [3]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    4. [4]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    5. [5]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    6. [6]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    7. [7]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    8. [8]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    18. [18]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(2)
  • Abstract views(335)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return