Citation:
	            
		            YANG  Lin, LI  Yang, CHEN  Shu, ZHANG  Jing, ZHANG  Min, WANG  Peng. Ultrafast Spectroscopic Studies of Excited State Relaxation and Electron Injection in Organic Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica,
							;2016, 32(1): 329-336.
						
							doi:
								10.3866/PKU.WHXB201511031
						
					
				
					
				
	        
- 
	                	Unlocking the dynamics of the evolution of the excited state at the complicated titania/dye/ electrolyte interface in organic dye-sensitized solar cells is crucial to provide a basis for the rational design of low-energy-gap organic photosensitizers. By constructing two organic donor-acceptor dyes composed of benzothiadiazole-benzoic acid (BTBA) and pyridothiadiazole-benzoic acid (PTBA) as electron acceptors, we have identified the images of multiple-step relaxations of the excited state and multiple-state electron injections at the titania/dye/electrolyte interface using ultrafast transient absorption spectroscopic measurements in conjunction with theoretical simulations. Density functional theory and time-dependent density functional theory calculations indicate that there should be torsion-induced excited state relaxations from an optically generated “hot” excited state to the equilibrium excited state characteristic of a more planar conjugated backbone and a quinonoid structure for dye molecules on the titania surface, suggesting the probable presence of multiple-state electron injections at the titania/dye/electrolyte interface. In virtue of a target analysis of femtosecond transient absorption spectra, we have found that the dye with PTBA features a much lower overall electron injection yield with respect to the dye with BTBA owing to the sluggish electron injection and short lifetime of the excited state, accounting for a lower maximum of external quantum efficiencies of the device made from the dye with PTBA as an acceptor.
- 
								Keywords:
								
 - Solar cell,
 - Organic dye,
 - Interface,
 - Excited state,
 - Charge transfer
 
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
(1) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0
 - 
			
                    [2]
                
			
(2) Robertson, N. Angew. Chem. Int. Edit. 2006, 45, 2338. doi: 10.1002/anie.200503083
 - 
			
                    [3]
                
			
(3) Imahori, H.; Umeyama, T.; Ito, S. Accounts Chem. Res. 2009, 42, 1809. doi: 10.1021/ar900034t
 - 
			
                    [4]
                
			
(4) Mishra, A.; Fischer, M. K. R.; Bäuerle, P. Angew. Chem. Int. Edit. 2009, 48, 2474. doi: 10.1002/anie.v48:14
 - 
			
                    [5]
                
			
(5) Vougioukalakis, G. C.; Philippopoulos, A. I.; Stergiopoulos, T.; Falaras, P. Coord. Chem. Rev. 2011, 255, 2602. doi: 10.1016/j.ccr.2010.11.006
 - 
			
                    [6]
                
			
(6) Li, C.; Wonneberger, H. Adv. Mater. 2012, 24, 613. doi: 10.1002/adma.201104447
 - 
			
                    [7]
                
			
(7) Yen, Y. S.; Chou, H. H.; Chen, Y. C.; Hsu, C. Y.; Lin, J. T. J. Mater. Chem. 2012, 22, 8734. doi: 10.1039/c2jm30362k
 - 
			
                    [8]
                
			
(8) Li, L. L.; Diau, E. W. G. Chem. Soc. Rev. 2013, 42, 291. doi: 10.1039/C2CS35257E
 - 
			
                    [9]
                
			
(9) Liang, M.; Chen, J. Chem. Soc. Rev. 2013, 42, 3453. doi: 10.1039/c3cs35372a
 - 
			
                    [10]
                
			
(10) Zhang, S.; Yang, X.; Numata, Y.; Han, L. Energy Environ. Sci. 2013, 6, 1443. doi: 10.1039/c3ee24453a
 - 
			
                    [11]
                
			
(11) Wu, Y.; Zhu, W. Chem. Soc. Rev. 2013, 42, 2039. doi: 10.1039/C2CS35346F
 - 
			
                    [12]
                
			
(12) Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J. I.; Hanaya, M. Chem. Commun., 2015, 51, 15894. doi: 10.1039/C5CC06759F
 - 
			
                    [13]
                
			
(13) Zhang, M.; Wang, Y.; Xu, M.; Ma, W.; Li, R.; Wang, P. Energy Environ. Sci. 2013, 6, 2944. doi: 10.1039/c3ee42331j
 - 
			
                    [14]
                
			
(14) Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. Nat. Chem. 2014, 6, 242. doi: 10.1038/nchem.1861
 - 
			
                    [15]
                
			
(15) Martín, C.; Ziółek, M.; Marchena, M.; Douhal, A. J. Phys. Chem. C 2011, 115, 23183. doi: 10.1021/jp203489u
 - 
			
                    [16]
                
			
(16) Ziółek, M.; Cohen, B.; Yang, X.; Sun, L.; Paulose, M.; Varghese, O. K.; Grimes, C. A.; Douhal, A. Phys. Chem. Chem. Phys. 2012, 14, 2816. doi: 10.1039/c2cp23825j
 - 
			
                    [17]
                
			
(17) Wang, Y.; Yang, L.; Xu, M.; Zhang, M.; Cai, Y.; Li, R.; Wang, P. J. Phys. Chem. C 2014, 118, 16441. doi: 10.1021/jp410929g
 - 
			
                    [18]
                
			
(18) Yao, Z.; Yang, L.; Cai, Y.; Yan, C.; Zhang, M.; Cai, N.; Dong, X.; Wang, P. J. Phys. Chem. C 2014, 118, 2977. doi: 10.1021/jp412070p
 - 
			
                    [19]
                
			
(19) Yao, Z.; Yan, C.; Zhang, M.; Li, R.; Cai, Y.; Wang, P. Adv. Energy Mater. 2014, 4, 1400244.
 - 
			
                    [20]
                
			
(20) Zhang, M.; Yao, Z.; Yan, C.; Cai, Y.; Ren, Y.; Zhang, J.; Wang, P. ACS Photonics 2014, 1, 710. doi: 10.1021/ph5001346
 - 
			
                    [21]
                
			
(21) Zhang, M.; Yang, L.; Yan, C.; Ma, W.; Wang, P. Phys. Chem. Chem. Phys. 2014, 16, 20578. doi: 10.1039/C4CP03230F
 - 
			
                    [22]
                
			
(22) Wang, P.; Zakeeruddin, S. M.; Comte, P.; Charvet, R.; Humphry-Baker, R.; Grätzel, M. J. Phys. Chem. B 2003, 107, 14336. doi: 10.1021/jp0365965
 - 
			
                    [23]
                
			
(23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.01; Gaussian Inc.: Wallingford, CT, 2009.
 - 
			
                    [24]
                
			
(24) Ernzerhof, M.; Scuseria, G. E. J. Chem. Phys. 1999, 110, 5029. doi: 10.1063/1.478401
 - 
			
                    [25]
                
			
(25) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158. doi: 10.1063/1.478522
 - 
			
                    [26]
                
			
(26) Jacquemin, D.; Perpète, E. A.; Scuseria, G. E.; Ciofine, I.; Adamo, C. J. Chem. Theory Comput. 2008, 4, 123. doi: 10.1021/ct700187z
 - 
			
                    [27]
                
			
(27) Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 4811. doi: 10.1021/jp000497z
 - 
			
                    [28]
                
			
(28) Pastore, M.; Mosconi, E.; De Angelis, F.; Gätzel, M. J. Phys. Chem. C 2010, 114, 7205. doi: 10.1021/jp100713r
 - 
			
                    [29]
                
			
(29) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669. doi: 10.1002/jcc.10189
 - 
			
                    [30]
                
			
(30) Perpete, E. A.; Jacquemin, D. J. Photochem. Photobiol. A: Chem. 2007, 187, 40. doi: 10.1016/j.jphotochem.2006.09.010
 - 
			
                    [31]
                
			
(31) Wang, Y.; Yang, L.; Zhang, J.; Li, R.; Zhang, M.; Wang, P. ChemPhysChem 2014, 15, 1037. doi: 10.1002/cphc.201301006
 - 
			
                    [32]
                
			
(32) Snellenburg, J. J.; Laptenok, S. P.; Seger, R.; Mullen, K. M.; van Stokkum, I. H. M. J. Stat. Softw. 2012, 49, 1
 - 
			
                    [33]
                
			
(33) Liu, J.; Li, R.; Si, X.; Zhou, D.; Shi, Y.; Wang, Y.; Wang, P. Energy Environ. Sci. 2010, 3, 1924. doi: 10.1039/c0ee00304b
 - 
			
                    [34]
                
			
(34) Cai, N.; Wang, Y.; Xu, M.; Fan, Y.; Li, R.; Zhang, M.; Wang, P. Adv. Funct. Mater. 2013, 23, 1846. doi: 10.1002/adfm.v23.14
 - 
			
                    [35]
                
			
(35) Kukura, P.: McCamant, D. W.; Yoon, S.; Wandschneider, D. B.; Mthies, R. A. Science 2005, 310, 1006. doi: 10.1126/science.1118379
 - 
			
                    [36]
                
			
(36) Tamai, N.; Miyasaka, H. Chem. Rev. 2000, 100, 1875. doi: 10.1021/cr9800816
 - 
			
                    [37]
                
			
(37) Dreuw, A.; Weisman, J. L.; Head-Gordon, M. J. Chem. Phys. 2003, 119, 2943. doi: 10.1063/1.1590951
 - 
			
                    [38]
                
			
(38) Frank, J. Trans. Faraday Soc. 1926, 21, 536. doi: 10.1039/tf9262100536
 - 
			
                    [39]
                
			
(39) Condon, E. Phys. Rev. 1926, 28, 1182. doi: 10.1103/PhysRev.28.1182
 - 
			
                    [40]
                
			
(40) Lanzani, G.; Nisoli, M.; De Silvestri, S.; Barbarella, G.; Zambianchi, M.; Tubino, R. Phys. Rev. B 1996, 53, 4453. doi: 10.1103/PhysRevB.53.4453
 - 
			
                    [41]
                
			
(41) Nelson, T.; Fernandez-Alberti, S.; Roitberg, A. E.; Tretiak, S. Accounts Chem. Res. 2014, 47, 1155. doi: 10.1021/ar400263p
 - 
			
                    [42]
                
			
(42) O'Regan, B. C.; Durrant, J. R. Accounts Chem. Res. 2009, 42, 1799. doi: 10.1021/ar900145z
 - 
			
                    [43]
                
			
(43) Duffy, N. W.; Peter, L. M.; Rajapakse, R. M. G.; Wijayant, K. G. U. Electrochem. Commun. 2000, 2, 658. doi: 10.1016/S1388-2481(00)00097-7
 - 
			
                    [44]
                
			
(44) O'Regan, B. C.; Bakker, K.; Kroeze, J.; Smit, H.; Sommeling, P.; Durrant, J. R. J. Phys. Chem. B 2006, 110, 17155. doi: 10.1021/jp062761f
 - 
			
                    [45]
                
			
(45) Bisquert, J. Phys. Chem. Chem. Phys. 2003, 5, 5360. doi: 10.1039/b310907k
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Xuechen Hu , Qiuying Xia , Fan Yue , Xinyi He , Zhenghao Mei , Jinshi Wang , Hui Xia , Xiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046
 - 
				[2]
				
Tao Xu , Wei Sun , Tianci Kong , Jie Zhou , Yitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021
 - 
				[3]
				
Xiaorui Chen , Xuan Luo , Tongming Su , Xinling Xie , Liuyun Chen , Yuejing Bin , Zuzeng Qin , Hongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126
 - 
				[4]
				
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
 - 
				[5]
				
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
 - 
				[6]
				
Yushan Cai , Fang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048
 - 
				[7]
				
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031
 - 
				[8]
				
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
 - 
				[9]
				
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027
 - 
				[10]
				
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065
 - 
				[11]
				
Weikang Wang , Yadong Wu , Jianjun Zhang , Kai Meng , Jinhe Li , Lele Wang , Qinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093
 - 
				[12]
				
Weilai Yu , Chuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022
 - 
				[13]
				
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007
 - 
				[14]
				
Qingjun PAN , Zhongliang GONG , Yuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365
 - 
				[15]
				
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006
 - 
				[16]
				
Yawen Guo , Dawei Li , Yang Gao , Cuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050
 - 
				[17]
				
Ruonan Li , Shijie Liang , Yunhua Xu , Cuifen Zhang , Zheng Tang , Baiqiao Liu , Weiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037
 - 
				[18]
				
Qi Wu , Changhua Wang , Yingying Li , Xintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107
 - 
				[19]
				
Da Wang , Xiaobin Yin , Jianfang Wu , Yaqiao Luo , Siqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029
 - 
				[20]
				
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(2)
 - Abstract views(480)
 - HTML views(46)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: