Citation: YIN Rui-Li, CHEN Li-Ping, CHEN Wang-Hua, WU Ke, ZHANG Cai-Xing, LI Han, YU Cheng. Kinetic Compensation Effect under Two Different Calorimetric Modes for Thermal Decomposition[J]. Acta Physico-Chimica Sinica, ;2016, 32(2): 391-398. doi: 10.3866/PKU.WHXB201511023 shu

Kinetic Compensation Effect under Two Different Calorimetric Modes for Thermal Decomposition

  • Corresponding author: CHEN Li-Ping, 
  • Received Date: 6 October 2015
    Available Online: 2 November 2015

    Fund Project: 国家自然科学基金(51204099) (51204099)江苏出入境检验检疫局科技计划(2014KJ59)资助项目 (2014KJ59)

  • Thermal analysis calorimeters can be used with different temperature control modes. Dynamic, isothermal, isoperibolic, and adiabatic modes are commonly used. A kinetic compensation effect was discovered when the kinetic parameters were calculated using the Arrhenius equation, based on dynamic and isothermal data. To determine whether the kinetic compensation effect existed in adiabatic mode, accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC) were used to obtain thermal decomposition curves of dicumyl peroxide (DCP), 40%(w) DCP in ethylbenzene, glucose, and 45% (w) glucose in water. The apparent activation energies (E) and pre-exponential factors (A) were calculated based on the Arrhenius rate constant. An obvious kinetic compensation effect was observed in a plot of lnA vs E for a given sample at different concentrations or for the same set of ARC data analyzed with different reaction orders n. Although the calculated lnA and E values using the dynamic differential scanning calorimetry data were usually lower than those using the adiabatic ARC data, a significant kinetic compensation effect existed between the two sets of results. This result suggested that the kinetic compensation effect existed between the activation energy and pre-exponential factor in reactions with the same or similar reaction mechanisms, regardless of the temperature control mode.
  • 加载中
    1. [1]

      (1) Chen, J. H.; Li, C. R. Thermal Analysis and Its Application, 1th ed.; Science Press: Beijing, 1985; pp 6-118. [陈镜泓, 李传儒. 热分析及其作用. 第一版. 北京: 科学出版社, 1985: 6-118]

    2. [2]

      (2) Hu, R. Z.; Gao, S. L.; Zhao, F. Q.; Shi, Q. Z.; Zhang, T. L.; Zhang, J. J. Thermal Analysis Kinetics, 2nd ed.; Science Press: Beijing, 2008; pp 151-155. [胡荣祖, 高胜利, 赵凤起, 史启祯, 张同来, 张建军. 热分析动力学. 第二版. 北京: 科学出版社, 2008: 151-155.]

    3. [3]

      (3) Tang, H.; Yan, Y. D.; Zhang, M. L.; Xue, Y.; Zhang, Z. J.; Du, W. C.; He, H. Acta Phys. -Chim. Sin. 2013, 29 (8), 1698. [唐浩, 颜永得, 张密林, 薛云, 张志俭, 杜卫超, 何辉. 物理化学学报, 2013, 29 (8), 1698.] doi: 10.3866/PKU.WHXB201305102

    4. [4]

      (4) Su, H. Z.; Yin, J. M.; Liu, Q. S.; Li, C. P. Acta Phys. -Chim. Sin. 2015, 31 (8), 1468. [宿洪祯, 尹静梅, 刘青山, 李长平. 物 理化学学报, 2015, 31 (8), 1468.] doi: 10.3866/PKU.WHXB201506111

    5. [5]

      (5) Gallagher, P. K.; Johnson, D.W. Thermochim. Acta 1976, 14 (3), 255. doi: 10.1016/0040-6031(76)85002-2

    6. [6]

      (6) Zhang, D. M.; Zheng, C. M.; Heng, S. Y.; Liu, Z. R.; Pan, Q.; Lu, H. L. Chinese Journal of Explosives & Propellants 2014, 37 (3), 82. [张冬梅, 郑朝民, 衡淑云, 刘子如, 潘清, 陆洪林. 火炸药学报, 2014, 37 (3), 82.]

    7. [7]

      (7) Qin, Z.; Balasubramanian, S. K.; Wolkers, W. F.; Pearce, J. A.; Bischof, J. C. Annals of Biomedical Engineering 2014, 42 (12), 2392. doi: 10.1007/s10439-014-1100-y

    8. [8]

      (8) Pouretedal, H. R.; Ravanbod, M. J. Therm. Anal. Calorim. 2015, 119 (3), 2281. doi: 10.1007/s10973-014-4330-1

    9. [9]

      (9) Chen, H.W.; Chen, J. T.; Wei, R. G.; Chen, L. Journal of Central South University: JCR-SC 2013, 44 (4), 1695. [陈鸿伟, 陈江涛, 危日光, 陈龙. 中南大学学报: 自然科学版, 2013, 44 (4), 1695.]

    10. [10]

      (10) Barrie, P. J. Phys. Chem. Chem. Phys. 2012, 14 (1), 318. doi: 10.1039/C1CP22666E

    11. [11]

      (11) Yelon, A.; Sacher, E.; Linert, W. Phys. Chem. Chem. Phys. 2012, 14 (22), 8232. doi: 10.1039/c2cp40618g

    12. [12]

      (12) Zuniga-Hansen, N.; Silbert, L. E.; Calbi, M. M. Breakdown of Kinetic Compensation Effect in Physical Desorption. http://arxiv.org/abs/1503.06362 (accessed Mar 21, 2015).

    13. [13]

      (13) Garn, P. D. Therm. Anal. 1976, 10 (1), 99. doi: 10.1007/BF02179195

    14. [14]

      (14) Brill, T. B.; Gongwer, P. E.; Williams, G. K. J. Chem. Phys. 1994, 98 (47), 12242.

    15. [15]

      (15) Liu, T. T.; Ran, Y. Y.; Wang, B. C.; Dong, W. B.; Wu, S. G.; Gong, J. B. Front. Chem. Sci. Eng. 2014, 8 (1), 55.

    16. [16]

      (16) Koga, N.; Šesták, J. Thermochim. Acta 1991, 182 (2), 201. doi: 10.1016/0040-6031(91)80005-4

    17. [17]

      (17) Townsend, D. I.; Tou, J. C. Thermochim. Acta 1980, 37 (1), 1. doi: 10.1016/0040-6031(80)85001-5

    18. [18]

      (18) Stoessel, F. Thermal Safety of Chemical Process: Risk Assessment and Process Design; Science Press: Beijing, 2009; pp 73-74; translated by Chen, W. H., Peng, J. H., Chen, L. P. [Stoessel, F. 化工工艺热安全: 风险评估与工艺设计. 陈网桦, 彭金华, 陈利平, 译. 北京: 科学出版社, 2009: 73-74.]

    19. [19]

      (19) Lu, K. The Influence of the Typical Additives of Emulsion Explosives on the Thermal Decomposition of Emulsion Explosives. M. S. Dissertation, Nanjing University of Science and Technology, Nanjing, 2009. [鲁凯. 乳化炸药中典型组分对其热分解行为影响的研究[D]. 南京: 南京理工大学, 2009.]

    20. [20]

      (20) Fisher, H. G.; Forrest, H. S.; Grossel, S. S.; Huff, J. E.; Muller, A. R.; Noronha, J. A.; Shaw, D. A.; Tilley, B. J. Emergency Relief System Design Using DIERS Technology: The Design Institute for Emergency Relief Systems (DIERS) Project Manual; JohnWiley & Sons: New York, 2010: pp 385-395.

    21. [21]

      (21) Liu, R. H.; Chen, W. H.; Hu, Y. T. Safety Principle and Dangerous Chemicals Assessment Technology, 1st ed.; Chemical Industry Press: Beijing, 2004; pp 158-163. [刘荣海, 陈网桦, 胡毅亭. 安全原理与危险化学品测评技术. 第一版. 北京: 化学工业出版社, 2004: 158-163.]

    22. [22]

      (22) Chen, L. P. Experimental and Theoretical Studies on Thermal Hazards of Toluene Nitrations. Ph. D. Dissertation, Nanjing University of Science and Technology, Nanjing, 2009. [陈利平. 甲苯硝化反应热危险性的实验与理论研究[D]. 南京: 南京理工大学, 2009.]

    23. [23]

      (23) Zhou, Y. S.; Chen, L. P.; Chen, W. H.; Yang, T.; Zhang, C. X.; Yin, R. L. CIESC Journal 2014, 65 (11), 4383. [周奕杉, 陈利平, 陈网桦, 杨庭, 张彩星, 尹瑞丽. 化工学报, 2014, 65 (11), 4383.]

    24. [24]

      (24) Kissinger, H. E. Anal. Chem. 1957, 29 (11), 1702. doi: 10.1021/ac60131a045

    25. [25]

      (25) Peng, M. J.; Lu, G. B.; Chen, W. H.; Chen, L. P.; Lü , J. Y. Acta Phys. -Chim. Sin. 2013, 29 (10), 2095. [彭敏君, 路贵斌, 陈网桦, 陈利平, 吕家育. 物理化学学报, 2013, 29 (10), 2095.] doi: 10.3866/PKU.WHXB201307122

  • 加载中
    1. [1]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    2. [2]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    3. [3]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    4. [4]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    5. [5]

      Chengxia Tong Yajie Li Jin Yan Xuejian Qu Shigang Wei Yong Fan Zhiguang Song Yupeng Guo . The Construction and Practice of a Comprehensive and Three-Dimensional Practical Education Model. University Chemistry, 2024, 39(7): 49-55. doi: 10.12461/PKU.DXHX202404155

    6. [6]

      Junlin Yan Changhao Wang Quanguo Zhai Chenghui Liu Dong Xue . A New Construction Model and Practice of Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 64-68. doi: 10.12461/PKU.DXHX202405005

    7. [7]

      Weizhou Jiao Zhiwei Liu Chao Zhang Zhiguo Yuan Guisheng Qi Jing Gao . Construction and Implementation of a Mode of Chemical Talent Training Driven by Practice and Innovation Ability. University Chemistry, 2024, 39(7): 76-81. doi: 10.12461/PKU.DXHX202405011

    8. [8]

      Yecang Tang Shan Ling Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107

    9. [9]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

    10. [10]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014

    11. [11]

      Yan Liu Xiaojun Han Ping Xu Guoxu Zhang Yu Wang Zhicheng Zhang Dianpeng Qi . “Five Measures” Based Science and Education Integration Experimental Teaching Mode to Promote the Construction of “Specialized Experiment” Curriculum. University Chemistry, 2024, 39(10): 299-307. doi: 10.12461/PKU.DXHX202405002

    12. [12]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    13. [13]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    14. [14]

      Yaqian Duan Juan Su Meiyu Lin Yuxin Fang Wenyi Liang . Exploration of the Implementation Path of Ideological and Political Education in the “Dual-Track Teaching” Model: a Case Study of Analytical Chemistry Experiment. University Chemistry, 2024, 39(2): 181-188. doi: 10.3866/PKU.DXHX202307024

    15. [15]

      Liqiang Lu Qin Shuai Xike Tian Chenggang Zhou Guo'e Cheng Bo han Yulun Nie Hongtao Zheng Lei Ouyang . Exploration and Practice of Deep Integration of Production and Education in Applied Chemistry Major under the Background of Emerging Engineering Education. University Chemistry, 2024, 39(3): 138-142. doi: 10.3866/PKU.DXHX202309015

    16. [16]

      Yaqing Zhou Jialin Liu Jili Wang Xin Zhou Yong Sun Wenhai Wu . Reform and Exploration of Assessment Models for Elective Courses in Local Universities: A Case Study of Hanjiang Normal University. University Chemistry, 2024, 39(4): 244-250. doi: 10.3866/PKU.DXHX202309056

    17. [17]

      Xinyue Zhang Yifeng Ding Ning Ma . Research on the “Project-based” Master’s Degree Model for Graduate Students in Materials and Chemical Engineering. University Chemistry, 2024, 39(6): 98-102. doi: 10.3866/PKU.DXHX202312093

    18. [18]

      Jing Li Lin Tian Zhao Li Yan Chen Zongfei Yang Huanhuan Shi . Exploration and Practice of the “134” Ideological and Political Teaching Model in the Introduction to Applied Chemistry. University Chemistry, 2024, 39(8): 7-15. doi: 10.3866/PKU.DXHX202311047

    19. [19]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    20. [20]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

Metrics
  • PDF Downloads(0)
  • Abstract views(258)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return