Citation: GUO Qing-Lian, PAN Ling-Li, YANG Li-Yun, HE Huan, ZHANG Ye-Zhong, LIU Yi. Thermodynamics of the Interaction of Imidacloprid with Human Serum Albumin[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 274-282. doi: 10.3866/PKU.WHXB201511021 shu

Thermodynamics of the Interaction of Imidacloprid with Human Serum Albumin

  • Corresponding author: LIU Yi, 
  • Received Date: 21 September 2015
    Available Online: 2 November 2015

    Fund Project: 湖北省卫生计生委重点项目(WJ2015MB097) (WJ2015MB097)武汉黄鹤英才(科技)计划(2014[10])资助 (科技)计划(2014[10])

  • The thermodynamics of the interaction between human serum albumin (HSA) and imidacloprid (IMI) was investigated using fluorescence, UV-Vis absorbance, and circular dichroism spectroscopy, in addition to molecular modeling under physiological conditions. The fluorescence quenching of HSA by IMI was a static process, which was confirmed by the UV-Vis absorption spectra. The calculated enthalpy (ΔH) and entropy (ΔS) changes implied that hydrogen bonds and van der Waals forces played a predominant role in the binding process. Site marker competitive experiments along with molecular docking indicated that the binding of IMI to HSA took place primarily in site Ⅰ. The circular dichroism and synchronous fluorescence spectroscopy demonstrated that the secondary structure of HSA changed after its interaction with IMI, causing the α-helix content to decrease with an increase in anunordered structure. The peptide structure extended after binding with IMI.
  • 加载中
    1. [1]

      (1) Wang, N.; Liu, Z. Y.; Hu, X. L.; Bo, F. Q.; Zhao, X. Z. Chem. J. Chin. Univ. 2011, 32 (2), 241. [王宁, 刘忠英, 胡秀丽, 卜凤泉, 赵学忠. 高等学校化学学报, 2011, 32 (2), 241.]

    2. [2]

      (2) Ding, F.; Diao, J. X.; Sun, Y.; Sun, Y. J. Agric. Food Chem. 2012, 60, 7218. doi: 10.1021/jf300424w

    3. [3]

      (3) Bekale, L.; Agudelo, D.; Tajmir-Riahi, H. A. Colloid Surf. B-Biointerfaces 2015, 130, 141. doi: 10.1016/j.colsurfb. 2015.03.045

    4. [4]

      (4) Luo, Y.; Chen, T. F.; Huang, X. C.; Wang, Y.; Huang, Y. C.; Zheng, W. J. Acta Chim. Sin. 2012, 70 (11), 1295. [罗懿, 陈填峰, 黄晓纯, 王弋, 黄荫成, 郑文杰. 化学学报, 2012, 70 (11), 1295.] doi: 10.6023/A1202031

    5. [5]

      (5) Andrasi, M.; Lehoczki, G.; Nagy, Z.; Gyemant, G.; Pungor, A.; Gaspar, A. Electrophoresis 2015, 36, 1274. doi: 10.1002/elps. v36.11-12

    6. [6]

      (6) Khan, A. B.; Khan, J. M.; Ali, M. S.; Khan, R. H.; Din, K. U. Colloid Surf. B-Biointerfaces 2011, 87 (2), 447. doi: 10.1016/j.colsurfb.2011.06.007

    7. [7]

      (7) Chi, Z.; Liu, R.; Teng, Y.; Fang, X.; Gao, C. J. Agric. Food Chem. 2010, 58, 10262.

    8. [8]

      (8) Peng, Y. L.; Wang, S. J.; Fu, L.; Zhang, C. G.; Liu, X. G. Acta Phys. -Chim. Sin. 2012, 28 (5), 1054. [彭玉苓. 王树军. 傅丽, 张成根, 刘新刚. 物理化学学报, 2012, 28 (5), 1054.] doi: 10.3866/PKU.WHXB201202222

    9. [9]

      (9) Uhl, P.; Bucher, R.; Schafer, R. B.; Entling, M. H.; Ling, E. Chemosphers 2015, 132, 152. doi: 10.1016/j.chemosphere. 2015.03.027

    10. [10]

      (10) Zhao, J.; Wang, M. L.; Dong, B. L.; Feng, Q.; Xu, C. X. Org. Process Res. Dev. 2013, 17, 375. doi: 10.1021/op300320a

    11. [11]

      (11) Ji, R. D.; Zhao, Z. M.; Zhang, L.; Ji, L.; Zhang, J. H.; Shen, L. B.; Lan, X. F. Spectrosc. Spect. Anal. 2013, 33 (3), 668. [季仁冬, 赵志敏, 张林, 季雷, 张吉华, 沈令斌, 兰秀风. 光谱学与光谱分析, 2013, 33 (3), 668.]

    12. [12]

      (12) Costa, C.; Silvari, V.; Melchini, A.; Catania, S.; Heffron, J. J.; Trovato, A.; De Pasquale, R. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2009, 672 (1), 40. doi: 10.1016/j.mrgentox. 2008.09.018

    13. [13]

      (13) Gawade, L.; Dadarkar, S. S.; Husain, R.; Gatne, M. Food Chem. Toxicol. 2013, 51, 61. doi: 10.1016/j.fct.2012.09.009

    14. [14]

      (14) Ding, F.; Han, B. Y.; Liu, W.; Zhang, L.; Sun, Y. J. Fluoresc. 2010, 20, 753. doi: 10.1007/s10895-010-0618-0

    15. [15]

      (15) Ding, F.; Peng, W.; Diao, J. X.; Zhang, L.; Sun, Y. J. Agric. Food Chem. 2013, 61, 4497. doi: 10.1021/jf3048065

    16. [16]

      (16) Kayoko, T.; Satoshi, K.; Satoshi, K.; Atsushi, Y.; Miki, A.; David, B. S.; Kazuhiko, M. Neuropharmacology 2009, 56, 264. doi: 10.1016/j.neuropharm.2008.08.022

    17. [17]

      (17) Ding, F.; Peng, W. J. Photochem. Photobiol. B-Biol. 2015, 147, 24. doi: 10.1016/j.jphotobiol.2015.03.010

    18. [18]

      (18) Wang, J.; Li, S.; Peng, X.; Yu, Q.; Bian, H.; Huang, F.; Liang, H. J. Luminesc. 2013, 136, 422. doi: 10.1016/j.jlumin.2012.12.004

    19. [19]

      (19) Petitpas, I.; Bhattacharya, A. A.; Twine, S.; East, M.; Curry, S. J. Biol. Chem. 2013, 276, 22804.

    20. [20]

      (20) Hemmateenejad, B.; Yousefinejad, S. J. Mol. Struct. 2013, 1037, 317. doi: 10.1016/j.molstruc.2013.01.009

    21. [21]

      (21) Dangkoob, F.; Housaindokht, M. R.; Asoodeh, A.; Rajabi, O.; Zaeri, Z. R.; Doghaei, A. V. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2015, 137, 1106. doi: 10.1016/j.saa. 2014.08.149

    22. [22]

      (22) Song, W.; Zhang, D.; Pan, X.; Lee, D. J. J. Luminesc. 2013, 136, 80. doi: 10.1016/j.jlumin.2012.11.008

    23. [23]

      (23) Li, D. W.; He, H.; Lin, B. B.; Xu, Z. Q.; Jiang, F. L.; Liu, Y. RSC Adv. 2014, 4, 3913. doi: 10.1039/C3RA46172F

    24. [24]

      (24) Li, J. H.; Wang, S. M. J. Chem. Thermodynamics 2013, 58, 206. doi: 10.1016/j.jct.2012.11.009

    25. [25]

      (25) Zaidi, N.; Ahmad, E.; Rehan, M.; Rabbani, G.; Ajmal, M. R.; Zaidi, Y.; Subbarao, N.; Khan, R. H. J. Phys. Chem. B 2013, 117, 2595. doi: 10.1021/jp3069877

    26. [26]

      (26) Gong, Q. L.; Hu, X. G.; Fang, G. Y.; Li, X. H. J. Mol. Model. 2012, 18, 493. doi: 10.1007/s00894-011-1069-5

    27. [27]

      (27) Hu, Y. J.; Yue, H. L.; Li, X. L.; Zhang, S. S.; Tang, E.; Zhang, L. P. J. Photochem. Photobiol. B-Biol. 2012, 112, 16. doi: 10.1016/j.jphotobiol.2012.04.001

    28. [28]

      (28) Markarian, S. A.; Aznauryan, M. G. Mol. Biol. Rep. 2012, 39 (7), 7559. doi: 10.1007/s11033-012-1590-3

    29. [29]

      (29) Banerjee, M.; Chakrabarti, A.; Basu, S. Dyes Pigment. 2013, 97, 446. doi: 10.1016/j.dyepig.2013.01.005

    30. [30]

      (30) Han, X. L.; Tian, F. F.; Ge, Y. S.; Jiang, F. L.; Lai, L.; Li, D. W.; Yu, Q. L. Y.; Wang, J.; Lin, C.; Liu, Y. J. Photochem. Photobiol. B-Biol. 2012, 109, 1. doi: 10.1016/j.jphotobiol.2011.12.010

    31. [31]

      (31) Ross, P. D.; Subramanian, S. Biochemistry 1981, 20 (11), 3096. doi: 10.1021/bi00514a017

    32. [32]

      (32) Wu, X.; Liu, J.; Huang, H.; Xue, W.; Yao, X.; Jin, J. Int. J. Biol. Macromol. 2011, 49 (3), 343. doi: 10.1016/j.ijbiomac. 2011.05.010

    33. [33]

      (33) Wang, Q.; He, J. W.; Wu, D.; Wang, J.; Yan, J.; Li, H. J. Luminesc. 2015, 164, 81. doi: 10.1016/j.jlumin.2015.03.025

    34. [34]

      (34) Zhang, Y. Z.; Dai, J.; Xiang, X.; Li, W. W.; Liu, Y. Mol. Biol. Rep. 2010, 37, 1541. doi: 10.1007/s11033-009-9555-x

    35. [35]

      (35) Azimi, O.; Emami, Z.; Salari, H.; Chamani, J. Molecules 2010, 16 (12), 9792.

    36. [36]

      (36) Zhang, G. W.; Ma, Y. D.; Wang, L.; Zhang, Y. P.; Zhou, J. Food Chem. 2012, 133, 264. doi: 10.1016/j.foodchem.2012.01.014

    37. [37]

      (37) Chen, T. T.; Zhu, X. T.; Chen, Q.; Ge, M.; Jia, X. P.; Wang, X.; Ge, C. W. Food Chem. 2015, 186, 292. doi: 10.1016/j.foodchem. 2014.11.041

    38. [38]

      (38) Zhang, Y. Z.; Zhou, B.; Liu, Y. X.; Zhou, C. X.; Ding, X. L.; Liu, Y. J. Fluoresc. 2008, 18, 109. doi: 10.1007/s10895-007-0247-4

    39. [39]

      (39) Punith, R.; Seetharamappa, J. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2012, 92, 37. doi: 10.1016/j.saa.2012.02.038

    40. [40]

      (40) Tian, F. F.; Jiang, F. L.; Han, X. L.; Xiang, C.; Ge, Y. S.; Li, J. H.; Zhang, Y.; Li, R.; Ding, X. L.; Liu, Y. J. Phys. Chem. B 2010, 114, 14842. doi: 10.1021/jp105766n

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    3. [3]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    4. [4]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    5. [5]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    8. [8]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

    9. [9]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    10. [10]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    11. [11]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    12. [12]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    13. [13]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    14. [14]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

    15. [15]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    16. [16]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    17. [17]

      Yan Li Fei Ding Jing Wang Jing Nan Yijun Li Xiaohang Qiu . Give a Man a Fish, and Teach a Man to Fish: Self-Designed Instrumental Analysis Experiments and Integration of Ideological and Political Elements. University Chemistry, 2024, 39(2): 208-213. doi: 10.3866/PKU.DXHX202310097

    18. [18]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    19. [19]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    20. [20]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

Metrics
  • PDF Downloads(0)
  • Abstract views(438)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return