Citation: LIU Shu-Bin. Information-Theoretic Approach in Density Functional Reactivity Theory[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 98-118. doi: 10.3866/PKU.WHXB201510302
-
Density functional reactivity theory (DFRT) is a recent endeavor to appreciate and quantify molecular reactivity with simple density functionals. Examples of such density functionals recently investigated in the literature included Shannon entropy, Fisher information, and other quantities from information theory. This review presents an overview on the principles of the information-theoretic approach in DFRT, including the extreme physical information principle, minimum information gain principle, and information conservation principle. Three representations of this approach with electron density, shape function, and atoms-in-molecules are also summarized. Moreover, their applications in quantifying steric effect, electrophilicity, nucleophilicity, and regioselectivity are highlighted, so are the recent results in a completely new understanding about the nature and origin of ortho/para and meta group directing phenomena in electrophilic aromatic substitution reactions. A brief outlook of a few possible future developments is discussed at the end.
-
-
[1]
(1) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules. In International Series of Monographs on Chemistry; Clarendon Press: Oxford, England, 1989.
-
[2]
(2) Levy, M.; Ouyang, H. Phys. Rev. A 1988, 38, 625. doi: 10.1103/PhysRevA.38.625
-
[3]
(3) Herring, C.; Chopra, M. Phys. Rev. A 1988, 37, 311.
-
[4]
(4) Liu, S. B.; Ayers, P. W. Phys. Rev. A 2004, 70, 022501. doi: 10.1103/PhysRevA.70.022501
-
[5]
(5) Geerlings, P.; DeProft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p
-
[6]
(6) Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065. doi: 10.1021/cr040109f
-
[7]
(7) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. [刘述斌. 物理化学学报, 2009, 25, 590.] doi: 10.3866/PKU.WHXB20090332
-
[8]
(8) Fukui, K. Accounts Chem. Res. 1971, 4, 57. doi: 10.1021/ar50038a003
-
[9]
(9) Hoffmann, R.; Woodward, R. B. J. Am. Chem. Soc. 1965, 87, 2046. doi: 10.1021/ja01087a034
-
[10]
(10) Geerlings, P.; Ayers, P. W.; Toro-Labbé, A.; Chattaraj, P. K.; De Proft, F. Accounts Chem. Res. 2012, 45, 683. doi: 10.1021/ar200192t
-
[11]
(11) Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, England, 1990.
-
[12]
(12) Johnson, E. R.; Keinan, S.; Mori-SÁnchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. J. Am. Chem. Soc 2010, 132, 6498.
-
[13]
(13) Nalewajski, R. F.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 8879. doi: 10.1073/pnas.97.16.8879
-
[14]
(14) Hirshfeld, F. Theor. Chim. Acc. 1977, 44, 129. doi: 10.1007/BF00549096
-
[15]
(15) Liu, S. B. J. Chem. Phys. 2007, 126, 244103. doi: 10.1063/1.2747247
-
[16]
(16) Liu, S. B.; Rong, C. Y.; Lu, T. J. Phys. Chem. A 2014, 118, 3698. doi: 10.1021/jp5032702
-
[17]
(17) Zhou, X. Y.; Rong, C. Y.; Lu, T.; Liu, S. B. Acta Phys. -Chim. Sin. 2014, 30, 2055. [周夏禹, 荣春英, 卢天, 刘述斌. 物理化学学报, 2014, 30, 2055.] doi: 10.3866/PKU.WHXB201409193
-
[18]
(18) Liu, S. B. J. Chem. Phys. 2014, 141, 194109. doi: 10.1063/1.4901898
-
[19]
(19) Rong, C. Y.; Lu, T.; Ayers, P. W.; Chattaraj, P. K.; Liu, S. B. Phys. Chem. Chem. Phys. 2015, 17, 4977; Phys. Chem. Chem. Phys. 2015, 17, 11110.
-
[20]
(20) Liu, S. B. J. Phys. Chem. A 2015, 119, 3107. doi: 10.1021/acs.jpca.5b00443
-
[21]
(21) Wu, W. J.; Wu, Z. M., Rong, C. Y.; Lu, T.; Huang, Y.; Liu, S. B. J. Phys. Chem. A 2015, 119, 8216. doi: 10.1021/acs.jpca.5b04309
-
[22]
(22) Wu, W. Z.; Rong, C. Y.; Lu, T.; Ayers, P. W.; Liu, S. B. Phys. Chem. Chem. Phys. 2015,17, 27052. doi: 10.1039/C5CP04442A
-
[23]
(23) Nagy, Á. Int. J. Quantum Chem. 2015, 115, 1392. doi: 10.1002/qua.v115.19
-
[24]
(24) Nagy, Á. Europhys. Lett. 2015, 109, 60002. doi: 10.1209/0295-5075/109/60002
-
[25]
(25) Nagy, Á.; Romera, E. Chem. Phys. Lett. 2014, 597, 139. doi: 10.1016/j.cplett.2014.02.032
-
[26]
(26) Nagy, Á. Int. J. Quantum Chem. 2014, 114, 24812.
-
[27]
(27) Nagy, Á.; Romera, E. Chem. Phys. Lett. 2010, 490, 242. doi: 10.1016/j.cplett.2010.03.057
-
[28]
(28) Nagy, Á.; Romera, E. Int. J. Quantum Chem. 2009, 109, 2490. doi: 10.1002/qua.v109:11
-
[29]
(29) Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049. doi: 10.1021/ja00326a036
-
[30]
(30) Morell, C.; Grand, A.; Toro-Labbé, A. J. Phys. Chem. A 2005, 109, 205. doi: 10.1021/jp046577a
-
[31]
(31) Liu, S. B.; Pedersen, L. G. J. Phys. Chem. A 2009, 113, 3648. doi: 10.1021/jp811250r
-
[32]
(32) Liu, S. B.; Schauer, C. K.; Pedersen, L. G. J. Chem. Phys. 2009, 131, 164107. doi: 10.1063/1.3251124
-
[33]
(33) Burger, S. K.; Liu, S. B.; Ayers, P. W. J. Phys. Chem. A 2011, 115, 1293. doi: 10.1021/jp111148q
-
[34]
(34) Huang, Y.; Liu, L.; Liu, W.; Liu, S. G.; Liu, S. B. J. Phys. Chem. A 2011, 115, 14697. doi: 10.1021/jp209540p
-
[35]
(35) Huang, Y.; Liu, L.; Liu, S. B. Chem. Phys. Lett. 2012, 527, 73. doi: 10.1016/j.cplett.2012.01.014
-
[36]
(36) Liu, S. B.; Ess, D. H.; Schauer, C. K. J. Phys. Chem. A 2011, 115, 4738. doi: 10.1021/jp112319d
-
[37]
(37) Kumar, N.; Liu, S. B.; Kozlowski, P. M. J. Phys. Chem. Lett. 2012, 3, 1035.
-
[38]
(38) Pan, S.; Sola, M.; Chattaraj, P. K. J. Phys. Chem. A 2013, 117, 1843. doi: 10.1021/jp312750n
-
[39]
(39) Chattaraj, P. K.; Giri, S.; Duley, S. J. Phys. Chem. A 2012, 116, 790. doi: 10.1021/jp208541x
-
[40]
(40) von Szentpaly, L. J. Phys. Chem. A 2011, 115, 8528.
-
[41]
(41) von Szentpaly, L. J. Phys. Chem. A 2013, 117, 200. doi: 10.1021/jp3103386
-
[42]
(42) von Szentpaly, L. J. Phys. Chem. A 2015, 119, 1715. doi: 10.1021/jp5084345
-
[43]
(43) Nalewajski, R. F.; Parr, R. G. J. Phys. Chem. A 2001, 105, 7391. doi: 10.1021/jp004414q
-
[44]
(44) Parr, R. G.; Ayers, P. W.; Nalewajski, R. F. J. Phys. Chem. A 2005, 109, 3957. doi: 10.1021/jp0404596
-
[45]
(45) Ayers, P. W. Theor. Chem. Acc. 2006, 115, 370. doi: 10.1007/s00214-006-0121-5
-
[46]
(46) Tsirelson, V. G.; Stash, A. I.; Liu, S. B. J. Chem. Phys. 2010, 133, 114110. doi: 10.1063/1.3492377
-
[47]
(47) Liu, S. B. J. Chem. Phys. 2007, 126, 191107. doi: 10.1063/1.2741244
-
[48]
(48) Esquivel, R. O.; Liu, S. B.; Angulo, J. C.; Dehesa, J. S.; Antolín, J.; Molina-Espíritu, M. J. Phys. Chem. A 2011, 115, 4406. doi: 10.1021/jp1095272
-
[49]
(49) Liu, S. B.; Govind, N. J. Phys. Chem. A 2008, 112, 6690. doi: 10.1021/jp800376a
-
[50]
(50) Liu, S. B.; Govind, N.; Pedersen, L. G. J. Chem. Phys. 2008, 129, 094104. doi: 10.1063/1.2976767
-
[51]
(51) Liu, S. B.; Hu, H.; Pedersen, L. G. J. Phys. Chem. A 2010, 114, 5913. doi: 10.1021/jp101329f
-
[52]
(52) Ess, D. H.; Liu, S. B.; De Proft, F. J. Phys. Chem. A 2010, 114, 12952. doi: 10.1021/jp108577g
-
[53]
(53) Huang, Y.; Zhong, A. G.; Yang, Q.; Liu, S. B. J. Chem. Phys. 2011, 134, 084103. doi: 10.1063/1.3555760
-
[54]
(54) Zhao, D. B.; Rong, C. Y.; Jenkins, S.; Kirk, S. R.; Yin, D. L.; Liu, S. B. Acta Phys. -Chim. Sin. 2013, 29, 43. [赵东波, 荣春英, 苏曼, 苏文, 尹笃林, 刘述斌. 物理化学学报, 2013, 29, 43.] doi: 10.3866/PKU.WHXB201211121
-
[55]
(55) Tsirelson, V. G.; Stash, A. I.; Karasiev, V. V.; Liu, S. B. Comp. Theor. Chem. 2013, 1006, 92. doi: 10.1016/j.comptc.2012.11.015
-
[56]
(56) Torrent-Sucarrat, M.; Liu, S. B.; De Proft, F. J. Phys. Chem. A 2009, 113, 3698. doi: 10.1021/jp8096583
-
[57]
(57) Liu, S. B. J. Phys. Chem. A 2013, 117, 962. doi: 10.1021/jp312521z
-
[58]
(58) Liu, S. B.; Schauer, C. K. J. Chem. Phys. 2015, 142, 054107. doi: 10.1063/1.4907365
-
[59]
(59) Shannon, C. E. Bell Syst. Tech. J. 1948, 27, 379. doi: 10.1002/bltj.1948.27.issue-3
-
[60]
(60) Sears, S. B.; Parr, R. G.; Dinur, U. Isr. J. Chem. 1980, 19, 165. doi: 10.1002/ijch.v19:1-4
-
[61]
(61) Sears, S. B.; Gadre, S. R. J. Chem. Phys. 1981, 75, 4626. doi: 10.1063/1.442578
-
[62]
(62) Romera, E.; Sanchez-Moreno, P.; Dehesa, J. S. Chem. Phys. Lett. 2005, 414, 468. doi: 10.1016/j.cplett.2005.08.032
-
[63]
(63) Fisher, R. A. Proc. Cambridge Philos. Soc. 1925, 22, 700. doi: 10.1017/S0305004100009580
-
[64]
(64) Ghosh, S. K. ; Berkowitz, M.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 1984, 81, 8028. doi: 10.1073/pnas.81.24.8028
-
[65]
(65) Liu, S. B.; Rong, C. Y.; Wu, Z. M.; Lu, T. Acta Phys. -Chim. Sin. 2015, 31, 2057. [刘述斌, 荣春英, 吴泽民, 卢天. 2015, 31, 2057.] doi: 10.3866/PKU.WHXB201509183
-
[66]
(66) Rényi, A. Probability Theory; North-Holland: Amsterdam, 1970.
-
[67]
(67) Tsallis, C. J. Stat. Phys. 1988, 52, 479. doi: 10.1007/BF01016429
-
[68]
(68) Onicescu, O. C. R. Acad. Sci. Paris A 1966, 263, 25.
-
[69]
(69) Kullback, S.; Leibler, R. A. Ann. Math. Stat. 1951, 22, 79.
-
[70]
(70) Parr, R. G.; Bartolotti, L. J. J. Phys. Chem. 1983, 87, 2810. doi: 10.1021/j100238a023
-
[71]
(71) De Proft, F.; Ayers, P. W.; Sen, K. D.; Geerlings, P. J. Chem. Phys. 2004, 120, 9969. doi: 10.1063/1.1729856
-
[72]
(72) Ayers, P. W. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 1959. doi: 10.1073/pnas.040539297
-
[73]
(73) Rong, C. Y.; Lu, T.; Liu, S. B. J. Chem. Phys. 2014, 140, 024109. doi: 10.1063/1.4860969
-
[74]
(74) Rong, C. Y.; Lu, T.; Chattaraj, P. K.; Liu, S. B. Indian J. Chem. Sect. A 2014, 53, 970.
-
[75]
(75) Becke, A. D. J. Chem. Phys. 1988, 88, 2547. doi: 10.1063/1.454033
-
[76]
(76) Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.v33.5
-
[77]
(77) von Weizsäcker, C. F. Z. Phys. 1935, 96, 431. doi: 10.1007/BF01337700
-
[78]
(78) March, N. H. Phys. Lett. A 1986, 113, 476. doi: 10.1016/0375-9601(86)90123-4
-
[79]
(79) Holas, A.; March, N. H. Phys. Rev. A 1991, 44, 5521. doi: 10.1103/PhysRevA.44.5521
-
[80]
(80) Nagy, Á. J. Chem. Phys. 2003, 119, 9401. doi: 10.1063/1.1615765
-
[81]
(81) Flores, J. A.; Keller, J. Phys. Rev. A 1992, 45, 6259. doi: 10.1103/PhysRevA.45.6259
-
[82]
(82) Levy, M.; Perdew, J. P. Phys. Rev. A 1985, 32, 2010. doi: 10.1103/PhysRevA.32.2010
-
[83]
(83) Liu, S. B.; Parr, R. G. Phys. Rev. A 1996, 53, 2211. doi: 10.1103/PhysRevA.53.2211
-
[84]
(84) Liu, S. B. Phys. Rev. A 1996, 54, 1328. doi: 10.1103/PhysRevA.54.1328
-
[85]
(85) Borgoo, A.; Teale, A. M.; Tozer, D. J. Phys. Chem. Chem. Phys. 2015, 16, 14578.
-
[86]
(86) Borgoo, A.; Tozer, D. J. J. Chem. Theory Comput. 2013, 9, 2250. doi: 10.1021/ct400129d
-
[87]
(87) Weisskopf, V. F. Science 1975, 187, 605. doi: 10.1126/science.187.4177.605
-
[88]
(88) Badenhoop, J. K.; Weinhold, F. J. Chem. Phys. 1997, 107, 5406. doi: 10.1063/1.474248
-
[89]
(89) Swain, C. G.; Scott, C. B. J. Am. Chem. Soc. 1953, 75, 141. doi: 10.1021/ja01097a041
-
[90]
(90) Ritchie, C. D. Accounts Chem. Res. 1972, 5, 348. doi: 10.1021/ar50058a005
-
[91]
(91) Mayr, H.; Patz, M. Angew. Chem. Int. Edit. 1994, 33, 938.
-
[92]
(92) Mayr, H.; Bug, T.; Gotta, M. F.; Hering, N.; Irrgang, B.; Janker, B.; Kempf, B.; Loos, R.; Ofial, A. R.; Remennikov, G.; Schimmel, H. J. Am. Chem. Soc. 2001, 123, 9500. doi: 10.1021/ja010890y
-
[93]
(93) Lucius, R.; Loos, R.; Mayr, H. Angew. Chem. Int. Edit. 2002, 41, 91. doi: 10.1002/1521-3773(20020104)41:1<>1.0.CO;2-5
-
[94]
(94) Mayr, H.; Kempf, B.; Ofial, A. R. Accounts Chem. Res. 2003, 36, 66. doi: 10.1021/ar020094c
-
[95]
(95) Crum Brown, A.; Gibson, J. J. Chem. Soc. Trans. 1892, 61, 367. doi: 10.1039/ct8926100367
-
[96]
(96) Solomons, T. W. G.; Fryhle, C. B.; Snydeer, S. A. Organic Chemistry; Wiley: New York, USA, 2013.
-
[97]
(97) Wade, L. G., Jr. Organic Chemistry; Prentice-Hall: New Jersey, USA, 2003.
-
[1]
-
-
[1]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
-
[2]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[3]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[4]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[5]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[6]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[7]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[8]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[9]
Daojuan Cheng , Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105
-
[10]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[11]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[12]
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
-
[13]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[14]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[15]
Conghao Shi , Ranran Wang , Juli Jiang , Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034
-
[16]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[17]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[18]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[19]
Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072
-
[20]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(399)
- HTML views(47)