Citation: LIU Shu-Bin. Information-Theoretic Approach in Density Functional Reactivity Theory[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 98-118. doi: 10.3866/PKU.WHXB201510302 shu

Information-Theoretic Approach in Density Functional Reactivity Theory

  • Corresponding author: LIU Shu-Bin, 
  • Received Date: 2 October 2015
    Available Online: 29 October 2015

  • Density functional reactivity theory (DFRT) is a recent endeavor to appreciate and quantify molecular reactivity with simple density functionals. Examples of such density functionals recently investigated in the literature included Shannon entropy, Fisher information, and other quantities from information theory. This review presents an overview on the principles of the information-theoretic approach in DFRT, including the extreme physical information principle, minimum information gain principle, and information conservation principle. Three representations of this approach with electron density, shape function, and atoms-in-molecules are also summarized. Moreover, their applications in quantifying steric effect, electrophilicity, nucleophilicity, and regioselectivity are highlighted, so are the recent results in a completely new understanding about the nature and origin of ortho/para and meta group directing phenomena in electrophilic aromatic substitution reactions. A brief outlook of a few possible future developments is discussed at the end.
  • 加载中
    1. [1]

      (1) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules. In International Series of Monographs on Chemistry; Clarendon Press: Oxford, England, 1989.

    2. [2]

      (2) Levy, M.; Ouyang, H. Phys. Rev. A 1988, 38, 625. doi: 10.1103/PhysRevA.38.625

    3. [3]

      (3) Herring, C.; Chopra, M. Phys. Rev. A 1988, 37, 311.

    4. [4]

      (4) Liu, S. B.; Ayers, P. W. Phys. Rev. A 2004, 70, 022501. doi: 10.1103/PhysRevA.70.022501

    5. [5]

      (5) Geerlings, P.; DeProft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p

    6. [6]

      (6) Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065. doi: 10.1021/cr040109f

    7. [7]

      (7) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. [刘述斌. 物理化学学报, 2009, 25, 590.] doi: 10.3866/PKU.WHXB20090332

    8. [8]

      (8) Fukui, K. Accounts Chem. Res. 1971, 4, 57. doi: 10.1021/ar50038a003

    9. [9]

      (9) Hoffmann, R.; Woodward, R. B. J. Am. Chem. Soc. 1965, 87, 2046. doi: 10.1021/ja01087a034

    10. [10]

      (10) Geerlings, P.; Ayers, P. W.; Toro-Labbé, A.; Chattaraj, P. K.; De Proft, F. Accounts Chem. Res. 2012, 45, 683. doi: 10.1021/ar200192t

    11. [11]

      (11) Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, England, 1990.

    12. [12]

      (12) Johnson, E. R.; Keinan, S.; Mori-SÁnchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. J. Am. Chem. Soc 2010, 132, 6498.

    13. [13]

      (13) Nalewajski, R. F.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 8879. doi: 10.1073/pnas.97.16.8879

    14. [14]

      (14) Hirshfeld, F. Theor. Chim. Acc. 1977, 44, 129. doi: 10.1007/BF00549096

    15. [15]

      (15) Liu, S. B. J. Chem. Phys. 2007, 126, 244103. doi: 10.1063/1.2747247

    16. [16]

      (16) Liu, S. B.; Rong, C. Y.; Lu, T. J. Phys. Chem. A 2014, 118, 3698. doi: 10.1021/jp5032702

    17. [17]

      (17) Zhou, X. Y.; Rong, C. Y.; Lu, T.; Liu, S. B. Acta Phys. -Chim. Sin. 2014, 30, 2055. [周夏禹, 荣春英, 卢天, 刘述斌. 物理化学学报, 2014, 30, 2055.] doi: 10.3866/PKU.WHXB201409193

    18. [18]

      (18) Liu, S. B. J. Chem. Phys. 2014, 141, 194109. doi: 10.1063/1.4901898

    19. [19]

      (19) Rong, C. Y.; Lu, T.; Ayers, P. W.; Chattaraj, P. K.; Liu, S. B. Phys. Chem. Chem. Phys. 2015, 17, 4977; Phys. Chem. Chem. Phys. 2015, 17, 11110.

    20. [20]

      (20) Liu, S. B. J. Phys. Chem. A 2015, 119, 3107. doi: 10.1021/acs.jpca.5b00443

    21. [21]

      (21) Wu, W. J.; Wu, Z. M., Rong, C. Y.; Lu, T.; Huang, Y.; Liu, S. B. J. Phys. Chem. A 2015, 119, 8216. doi: 10.1021/acs.jpca.5b04309

    22. [22]

      (22) Wu, W. Z.; Rong, C. Y.; Lu, T.; Ayers, P. W.; Liu, S. B. Phys. Chem. Chem. Phys. 2015,17, 27052. doi: 10.1039/C5CP04442A

    23. [23]

      (23) Nagy, Á. Int. J. Quantum Chem. 2015, 115, 1392. doi: 10.1002/qua.v115.19

    24. [24]

      (24) Nagy, Á. Europhys. Lett. 2015, 109, 60002. doi: 10.1209/0295-5075/109/60002

    25. [25]

      (25) Nagy, Á.; Romera, E. Chem. Phys. Lett. 2014, 597, 139. doi: 10.1016/j.cplett.2014.02.032

    26. [26]

      (26) Nagy, Á. Int. J. Quantum Chem. 2014, 114, 24812.

    27. [27]

      (27) Nagy, Á.; Romera, E. Chem. Phys. Lett. 2010, 490, 242. doi: 10.1016/j.cplett.2010.03.057

    28. [28]

      (28) Nagy, Á.; Romera, E. Int. J. Quantum Chem. 2009, 109, 2490. doi: 10.1002/qua.v109:11

    29. [29]

      (29) Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049. doi: 10.1021/ja00326a036

    30. [30]

      (30) Morell, C.; Grand, A.; Toro-Labbé, A. J. Phys. Chem. A 2005, 109, 205. doi: 10.1021/jp046577a

    31. [31]

      (31) Liu, S. B.; Pedersen, L. G. J. Phys. Chem. A 2009, 113, 3648. doi: 10.1021/jp811250r

    32. [32]

      (32) Liu, S. B.; Schauer, C. K.; Pedersen, L. G. J. Chem. Phys. 2009, 131, 164107. doi: 10.1063/1.3251124

    33. [33]

      (33) Burger, S. K.; Liu, S. B.; Ayers, P. W. J. Phys. Chem. A 2011, 115, 1293. doi: 10.1021/jp111148q

    34. [34]

      (34) Huang, Y.; Liu, L.; Liu, W.; Liu, S. G.; Liu, S. B. J. Phys. Chem. A 2011, 115, 14697. doi: 10.1021/jp209540p

    35. [35]

      (35) Huang, Y.; Liu, L.; Liu, S. B. Chem. Phys. Lett. 2012, 527, 73. doi: 10.1016/j.cplett.2012.01.014

    36. [36]

      (36) Liu, S. B.; Ess, D. H.; Schauer, C. K. J. Phys. Chem. A 2011, 115, 4738. doi: 10.1021/jp112319d

    37. [37]

      (37) Kumar, N.; Liu, S. B.; Kozlowski, P. M. J. Phys. Chem. Lett. 2012, 3, 1035.

    38. [38]

      (38) Pan, S.; Sola, M.; Chattaraj, P. K. J. Phys. Chem. A 2013, 117, 1843. doi: 10.1021/jp312750n

    39. [39]

      (39) Chattaraj, P. K.; Giri, S.; Duley, S. J. Phys. Chem. A 2012, 116, 790. doi: 10.1021/jp208541x

    40. [40]

      (40) von Szentpaly, L. J. Phys. Chem. A 2011, 115, 8528.

    41. [41]

      (41) von Szentpaly, L. J. Phys. Chem. A 2013, 117, 200. doi: 10.1021/jp3103386

    42. [42]

      (42) von Szentpaly, L. J. Phys. Chem. A 2015, 119, 1715. doi: 10.1021/jp5084345

    43. [43]

      (43) Nalewajski, R. F.; Parr, R. G. J. Phys. Chem. A 2001, 105, 7391. doi: 10.1021/jp004414q

    44. [44]

      (44) Parr, R. G.; Ayers, P. W.; Nalewajski, R. F. J. Phys. Chem. A 2005, 109, 3957. doi: 10.1021/jp0404596

    45. [45]

      (45) Ayers, P. W. Theor. Chem. Acc. 2006, 115, 370. doi: 10.1007/s00214-006-0121-5

    46. [46]

      (46) Tsirelson, V. G.; Stash, A. I.; Liu, S. B. J. Chem. Phys. 2010, 133, 114110. doi: 10.1063/1.3492377

    47. [47]

      (47) Liu, S. B. J. Chem. Phys. 2007, 126, 191107. doi: 10.1063/1.2741244

    48. [48]

      (48) Esquivel, R. O.; Liu, S. B.; Angulo, J. C.; Dehesa, J. S.; Antolín, J.; Molina-Espíritu, M. J. Phys. Chem. A 2011, 115, 4406. doi: 10.1021/jp1095272

    49. [49]

      (49) Liu, S. B.; Govind, N. J. Phys. Chem. A 2008, 112, 6690. doi: 10.1021/jp800376a

    50. [50]

      (50) Liu, S. B.; Govind, N.; Pedersen, L. G. J. Chem. Phys. 2008, 129, 094104. doi: 10.1063/1.2976767

    51. [51]

      (51) Liu, S. B.; Hu, H.; Pedersen, L. G. J. Phys. Chem. A 2010, 114, 5913. doi: 10.1021/jp101329f

    52. [52]

      (52) Ess, D. H.; Liu, S. B.; De Proft, F. J. Phys. Chem. A 2010, 114, 12952. doi: 10.1021/jp108577g

    53. [53]

      (53) Huang, Y.; Zhong, A. G.; Yang, Q.; Liu, S. B. J. Chem. Phys. 2011, 134, 084103. doi: 10.1063/1.3555760

    54. [54]

      (54) Zhao, D. B.; Rong, C. Y.; Jenkins, S.; Kirk, S. R.; Yin, D. L.; Liu, S. B. Acta Phys. -Chim. Sin. 2013, 29, 43. [赵东波, 荣春英, 苏曼, 苏文, 尹笃林, 刘述斌. 物理化学学报, 2013, 29, 43.] doi: 10.3866/PKU.WHXB201211121

    55. [55]

      (55) Tsirelson, V. G.; Stash, A. I.; Karasiev, V. V.; Liu, S. B. Comp. Theor. Chem. 2013, 1006, 92. doi: 10.1016/j.comptc.2012.11.015

    56. [56]

      (56) Torrent-Sucarrat, M.; Liu, S. B.; De Proft, F. J. Phys. Chem. A 2009, 113, 3698. doi: 10.1021/jp8096583

    57. [57]

      (57) Liu, S. B. J. Phys. Chem. A 2013, 117, 962. doi: 10.1021/jp312521z

    58. [58]

      (58) Liu, S. B.; Schauer, C. K. J. Chem. Phys. 2015, 142, 054107. doi: 10.1063/1.4907365

    59. [59]

      (59) Shannon, C. E. Bell Syst. Tech. J. 1948, 27, 379. doi: 10.1002/bltj.1948.27.issue-3

    60. [60]

      (60) Sears, S. B.; Parr, R. G.; Dinur, U. Isr. J. Chem. 1980, 19, 165. doi: 10.1002/ijch.v19:1-4

    61. [61]

      (61) Sears, S. B.; Gadre, S. R. J. Chem. Phys. 1981, 75, 4626. doi: 10.1063/1.442578

    62. [62]

      (62) Romera, E.; Sanchez-Moreno, P.; Dehesa, J. S. Chem. Phys. Lett. 2005, 414, 468. doi: 10.1016/j.cplett.2005.08.032

    63. [63]

      (63) Fisher, R. A. Proc. Cambridge Philos. Soc. 1925, 22, 700. doi: 10.1017/S0305004100009580

    64. [64]

      (64) Ghosh, S. K. ; Berkowitz, M.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 1984, 81, 8028. doi: 10.1073/pnas.81.24.8028

    65. [65]

      (65) Liu, S. B.; Rong, C. Y.; Wu, Z. M.; Lu, T. Acta Phys. -Chim. Sin. 2015, 31, 2057. [刘述斌, 荣春英, 吴泽民, 卢天. 2015, 31, 2057.] doi: 10.3866/PKU.WHXB201509183

    66. [66]

      (66) Rényi, A. Probability Theory; North-Holland: Amsterdam, 1970.

    67. [67]

      (67) Tsallis, C. J. Stat. Phys. 1988, 52, 479. doi: 10.1007/BF01016429

    68. [68]

      (68) Onicescu, O. C. R. Acad. Sci. Paris A 1966, 263, 25.

    69. [69]

      (69) Kullback, S.; Leibler, R. A. Ann. Math. Stat. 1951, 22, 79.

    70. [70]

      (70) Parr, R. G.; Bartolotti, L. J. J. Phys. Chem. 1983, 87, 2810. doi: 10.1021/j100238a023

    71. [71]

      (71) De Proft, F.; Ayers, P. W.; Sen, K. D.; Geerlings, P. J. Chem. Phys. 2004, 120, 9969. doi: 10.1063/1.1729856

    72. [72]

      (72) Ayers, P. W. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 1959. doi: 10.1073/pnas.040539297

    73. [73]

      (73) Rong, C. Y.; Lu, T.; Liu, S. B. J. Chem. Phys. 2014, 140, 024109. doi: 10.1063/1.4860969

    74. [74]

      (74) Rong, C. Y.; Lu, T.; Chattaraj, P. K.; Liu, S. B. Indian J. Chem. Sect. A 2014, 53, 970.

    75. [75]

      (75) Becke, A. D. J. Chem. Phys. 1988, 88, 2547. doi: 10.1063/1.454033

    76. [76]

      (76) Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.v33.5

    77. [77]

      (77) von Weizsäcker, C. F. Z. Phys. 1935, 96, 431. doi: 10.1007/BF01337700

    78. [78]

      (78) March, N. H. Phys. Lett. A 1986, 113, 476. doi: 10.1016/0375-9601(86)90123-4

    79. [79]

      (79) Holas, A.; March, N. H. Phys. Rev. A 1991, 44, 5521. doi: 10.1103/PhysRevA.44.5521

    80. [80]

      (80) Nagy, Á. J. Chem. Phys. 2003, 119, 9401. doi: 10.1063/1.1615765

    81. [81]

      (81) Flores, J. A.; Keller, J. Phys. Rev. A 1992, 45, 6259. doi: 10.1103/PhysRevA.45.6259

    82. [82]

      (82) Levy, M.; Perdew, J. P. Phys. Rev. A 1985, 32, 2010. doi: 10.1103/PhysRevA.32.2010

    83. [83]

      (83) Liu, S. B.; Parr, R. G. Phys. Rev. A 1996, 53, 2211. doi: 10.1103/PhysRevA.53.2211

    84. [84]

      (84) Liu, S. B. Phys. Rev. A 1996, 54, 1328. doi: 10.1103/PhysRevA.54.1328

    85. [85]

      (85) Borgoo, A.; Teale, A. M.; Tozer, D. J. Phys. Chem. Chem. Phys. 2015, 16, 14578.

    86. [86]

      (86) Borgoo, A.; Tozer, D. J. J. Chem. Theory Comput. 2013, 9, 2250. doi: 10.1021/ct400129d

    87. [87]

      (87) Weisskopf, V. F. Science 1975, 187, 605. doi: 10.1126/science.187.4177.605

    88. [88]

      (88) Badenhoop, J. K.; Weinhold, F. J. Chem. Phys. 1997, 107, 5406. doi: 10.1063/1.474248

    89. [89]

      (89) Swain, C. G.; Scott, C. B. J. Am. Chem. Soc. 1953, 75, 141. doi: 10.1021/ja01097a041

    90. [90]

      (90) Ritchie, C. D. Accounts Chem. Res. 1972, 5, 348. doi: 10.1021/ar50058a005

    91. [91]

      (91) Mayr, H.; Patz, M. Angew. Chem. Int. Edit. 1994, 33, 938.

    92. [92]

      (92) Mayr, H.; Bug, T.; Gotta, M. F.; Hering, N.; Irrgang, B.; Janker, B.; Kempf, B.; Loos, R.; Ofial, A. R.; Remennikov, G.; Schimmel, H. J. Am. Chem. Soc. 2001, 123, 9500. doi: 10.1021/ja010890y

    93. [93]

      (93) Lucius, R.; Loos, R.; Mayr, H. Angew. Chem. Int. Edit. 2002, 41, 91. doi: 10.1002/1521-3773(20020104)41:1<>1.0.CO;2-5

    94. [94]

      (94) Mayr, H.; Kempf, B.; Ofial, A. R. Accounts Chem. Res. 2003, 36, 66. doi: 10.1021/ar020094c

    95. [95]

      (95) Crum Brown, A.; Gibson, J. J. Chem. Soc. Trans. 1892, 61, 367. doi: 10.1039/ct8926100367

    96. [96]

      (96) Solomons, T. W. G.; Fryhle, C. B.; Snydeer, S. A. Organic Chemistry; Wiley: New York, USA, 2013.

    97. [97]

      (97) Wade, L. G., Jr. Organic Chemistry; Prentice-Hall: New Jersey, USA, 2003.

  • 加载中
    1. [1]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    2. [2]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    3. [3]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    8. [8]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    11. [11]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    12. [12]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    13. [13]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    14. [14]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    15. [15]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    16. [16]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    17. [17]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    18. [18]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    19. [19]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    20. [20]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

Metrics
  • PDF Downloads(0)
  • Abstract views(448)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return