Citation: YANG Wen-Jing, ZHANG Yu-Jin, WANG Chuan-Kui. Optical Properties and Responsive Mechanism of 4-Amino-1,8-Naphthalimide-Based Two-Photon Fluorescent Probe for Sensing Hydrogen Sulfide[J]. Acta Physico-Chimica Sinica, ;2015, 31(12): 2303-2309. doi: 10.3866/PKU.WHXB201510233 shu

Optical Properties and Responsive Mechanism of 4-Amino-1,8-Naphthalimide-Based Two-Photon Fluorescent Probe for Sensing Hydrogen Sulfide

  • Corresponding author: WANG Chuan-Kui, 
  • Received Date: 3 August 2015
    Available Online: 23 October 2015

    Fund Project: 国家重点基础研究发展规划项目(973)(2011CB808100)资助 (973)(2011CB808100)

  • Response theory was used to investigate one-photon absorption (OPA) and emission, and twophoton absorption (TPA) of two novel truncated two-photon fluorescent probes AcHS-1,2 in the presence and absence of H2S using density functional theory in combination with the polarizable continuum model . Changes in the optical properties, including large redshifts of the OPA, TPA, and emission peak positions were observed when the probes reacted with H2S, indicating that AcHS-1,2 make effective and selective chemosensors for H2S. We have also demonstrated that the terminal group on the probes influenced their nonlinear optical properties (AcHS-1: n-butyl group and AcHS-2: hydroxyethyl group). The responsive mechanism of AcHS-1,2 for sensing H2S was analyzed by studying the charge variations between the charge transfer and ground states of the free molecules and their reaction products using Mulliken population analysis. Importantly, this mechanism was attributed to an intramolecular charge transfer.
  • 加载中
    1. [1]

      (1) He, X. W.; Long, H. T.; Yuan, G.; Xu, X. J.; Zhou, Y. W. Acta Phys. -Chim. Sin. 2010, 26 (4), 1082. [何湘伟, 龙海涛, 袁谷, 徐筱杰, 周亚伟. 物理化学学报, 2010, 26 (4), 1082.] doi: 10.3866/PKU.WHXB20100416

    2. [2]

      (2) Li, H.; Liu, X. M.; Geng, B.; Pan, C. S.; Qi, Y. F.; Wu, S. Y.; Tang, C. S. J. Peking Univ. Health Sci. 2006, 38 (2), 140. [李虹, 刘新民, 耿彬, 潘春水, 齐永芬, 吴胜英, 唐朝枢. 北京大学学报(医学版), 2006, 38 (2), 140.]

    3. [3]

      (3) Krishnan, N.; Fu, C.; Pappin, D. J.; Tonks, N. K. Sci. Signal. 2011, No. 4, 86.

    4. [4]

      (4) Liao, F.; Zheng, Y.; Geng, B. Prog. Physiol. Sci. 2012, 43 (2), 111. [廖峰, 郑扬, 耿彬. 生理科学进展, 2012, 43 (2), 111.]

    5. [5]

      (5) Morita, T.; Perrella, M. A.; Lee, M. E. Proc. Natl. Acad. Sci. U. S. A. 1995, 92 (5), 1475. doi: 10.1073/pnas.92.5.1475

    6. [6]

      (6) Wang, M.; Zhu, J.; Yang, P.; Dong, J. D.; Zhang, L. L.; Zhang, X. R.; Zhang, L. J. Neurosci. Res. 2015, 93, 487. doi: 10.1002/jnr.v93.3

    7. [7]

      (7) Michele, F. D.; Luchetti, S.; Bernardi, G.; Romeo, E.; Longone, P. Front. Neuroendocrin. 2013, 34, 132.

    8. [8]

      (8) Li, L.; Rose, P.; Moore, P. K. Annu. Rev. Pharmacol. 2011, 51, 169. doi: 10.1146/annurev-pharmtox-010510-100505

    9. [9]

      (9) Lowicka, E.; Beltowski, J. Pharmacol. Rep. 2007, 59, 4.

    10. [10]

      (10) Szabo, C. Nat. Rev. Drug Discov. 2007, 6, 917. doi: 10.1038/nrd2425

    11. [11]

      (11) Choi, M. G.; Cha, S.; Lee, H.; Jeon, H. L.; Chang, S. K. Chem. Commun. 2009, 7390.

    12. [12]

      (12) Lawrence, N. S.; Davis, J.; Jiang, L.; Jones, T. G. J.; Davies, S. N.; Compton, R. G. Electroanalysis 2000, 18, 1453.

    13. [13]

      (13) Mitchell, T. W.; Savage, J. C.; Gould, D. H. J. Appl. Toxicol. 1993, 13, 389.

    14. [14]

      (14) Ishigami, M.; Hiraki, K.; Umemura, K.; Ogasawara, Y.; Ishii, K.; Kimura, H. Antioxid. Redox. Sign. 2009, 11, 205. doi: 10.1089/ars.2008.2132

    15. [15]

      (15) Wang, Y.; Zhao, Q.; Sun, J.; Lü , J. Z.; Tang, B. Prog. Chem. 2013, 25 (2), 179. [王栩, 赵谦, 孙娟, 吕建政, 唐波. 化学进展, 2013, 25 (2), 179.]

    16. [16]

      (16) Fu, X. Y.; Shao, G. S.; Han, R. C.; Ma, Y.; Xue, F. M.; Yang, F.; Fu, L. M.; Zhang, J. P.; Wang, Y. Acta Phys. -Chim. Sin. 2012, 28 (10), 2480. [符小艺, 邵光胜, 韩荣成, 马严, 薛富民, 杨帆, 付立民, 张建平, 王远. 物理化学学报, 2012, 28 (10), 2480.] doi: 10.3866/PKU.WHXB201208161

    17. [17]

      (17) Li, H.; Hao, Z. Y.; Meng, X.; Zhu, Y. C. Chin. J. Chem. Phys. 2015, 28 (2), 235. doi: 10.1063/1674-0068/28/cjcp1410184

    18. [18]

      (18) Tong, Y.; Dai, C. G.; Ren, Y.; Luo, S. W. Chin. J. Chem. Phys. 2015, 28 (3), 277. doi: 10.1063/1674-0068/28/cjcp1412217

    19. [19]

      (19) Wu, Z. S, ; Li, Z.; Yang, L.; Han, J. H.; Han, S. F. Chem. Commun. 2012, 48, 10120. doi: 10.1039/c2cc34682f

    20. [20]

      (20) Chen, Y. G.; Zhu, C. C.; Yang, Z. H.; Chen, J. J.; He, Y. F.; Jiao, Y.; He, W.; Qiu, L.; Cen, J. J.; Guo, Z. J. Angew. Chem. 2013, 125, 1732. doi: 10.1002/ange.v125.6

    21. [21]

      (21) Liu, X. L.; Du, X. J.; Dai, C. G.; Song, Q. H. J. Org. Chem. 2014, 79, 9481. doi: 10.1021/jo5014838

    22. [22]

      (22) Ding, H. J.; Sun, J.; Zhang, Y. J.; Wang, C. K. Chem. Phys. Lett. 2014, 591, 142. doi: 10.1016/j.cplett.2013.11.015

    23. [23]

      (23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.01; Gaussian Inc.: Wallingford, CT, 2009.

    24. [24]

      (24) WIREs. Comput. Mol. Sci. 2014, 4, 269. doi: 10.1002/wcms.2014.4.issue-3

    25. [25]

      (25) Zhang, Y. J.; Zhang, Q. Y.; Ding, H. J.; Song, X. N.; Wang, C. K. Chin. Phys. B 2015, 24, 023301. doi: 10.1088/1674-1056/24/2/023301

  • 加载中
    1. [1]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    2. [2]

      Shangqian ZhangJiaxuan LiXuan HuZelong ChenJunliang DongChenhao HuShuang ChaoYinghua LvYuxin PeiZhichao Pei . H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis. Chinese Chemical Letters, 2025, 36(1): 110314-. doi: 10.1016/j.cclet.2024.110314

    3. [3]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    4. [4]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    5. [5]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    6. [6]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    7. [7]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    8. [8]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    9. [9]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    10. [10]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    11. [11]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    12. [12]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    13. [13]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    14. [14]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    15. [15]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    16. [16]

      Bin FangJiaqi YangLimin WangHaoqin LiJiaying GuoJiaxin ZhangQingyuan GuoBo PengKedi LiuMiaomiao XiHua BaiLi FuLin Li . A mitochondria-targeted H2S-activatable fluorogenic probe for tracking hepatic ischemia-reperfusion injury. Chinese Chemical Letters, 2024, 35(6): 108913-. doi: 10.1016/j.cclet.2023.108913

    17. [17]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    18. [18]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    19. [19]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    20. [20]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

Metrics
  • PDF Downloads(0)
  • Abstract views(498)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return