Citation: ZHONG Jing-Rong, SHAO Lang, YU Chun-Rong, REN Yi-Ming. in-situ FT-IR Study of Hydrolyzation Reaction at Ambient Temperature and Thermal Transformation Behaviors of UF4/KBr in Air[J]. Acta Physico-Chimica Sinica, ;2015, 31(12): 2251-2258. doi: 10.3866/PKU.WHXB201510232 shu

in-situ FT-IR Study of Hydrolyzation Reaction at Ambient Temperature and Thermal Transformation Behaviors of UF4/KBr in Air

  • Corresponding author: REN Yi-Ming, 
  • Received Date: 25 August 2015
    Available Online: 23 October 2015

    Fund Project: 国家自然科学基金(21507118)资助项目 (21507118)

  • The hydrolyzation reaction and thermal transformation of UF4/KBr in air at ambient temperatures were studied by in-situ transmission Fourier transform infrared (FT-IR) spectroscopy. The infrared spectra for a series of different compounds containing uranium before and after reaction were obtained. Following hydrolysis of UF4/KBr in air, the primary products were UO2F2 and their hydrolysates. Other products, including U3O8, UO2, and UO3, appeared with increased reaction time. During the heating process, the hydrolysates of UF4/KBr reacted with each other, finally yielding only uranium oxides.
  • 加载中
    1. [1]

      (1) Katz, J. J.; Rabinowitz, E. The Chemistry of Uranium; McGraw-Hill Book Co. Ltd.: New York, 1951.

    2. [2]

      (2) Cordfunke, E. H. P. The Chemistry of Uranium; Elsevier Pub. Co.: Amsterdam-London-New York, 1969.

    3. [3]

      (3) DeWitt, R. Uranium Hexafluoride: a Survey of the Physico-Chemical Properties; GAT-280, Goodyear Atomic Corporation: Portsmouth, Ohio, 1960.

    4. [4]

      (4) Levy, J. H.; Taylor, J. C.; Wilson, P. W. Journal of the Chemical Society-Dalton Transactions 1976, 219.

    5. [5]

      (5) Howard, C. J.; Taylor, J. C.; Waugh, A. B. Journal of Solid State Chemistry 1982, 45, 396. doi: 10.1016/0022-4596(82)90185-2

    6. [6]

      (6) Walker, S. M.; Halasyamani, P. S.; Allen, S. J. Am. Chem. Soc. 1999, 121, 10513. doi: 10.1021/ja992145f

    7. [7]

      (7) Ludwing, F. J.; Kennelley, J. A. The Pyrohydrolysis of Green Salt; USAEC Rep MCW-1419, 1958.

    8. [8]

      (8) Matae, I.; Niro, I. J. Nucl. Sci. Technol. 1983, 20 (5), 400. doi: 10.1080/18811248.1983.9733409

    9. [9]

      (9) Xu, H. Q.; Qiu, L. F. Transformation Technology of Uranium Compounds; Atomic Energy Press: Beijing, 1994. [许贺卿, 邱履福. 铀化合物转化工艺学. 北京: 原子能出版社, 1994.]

    10. [10]

      (10) Sherrow, S. A.; Hunt, R. D. J. Phys. Chem. 1992, 96 (3), 1095. doi: 10.1021/j100182a015

    11. [11]

      (11) Anderson, S. P. A Study of the Hydrolysis of Uranium Hexafluoride by Fourier Transform Infrared Spectroscopy; DE85 012871, 1982.

    12. [12]

      (12) Bostick, W. D.; McCulla, W. H.; Pickrell, P. W. Sampling, Characterization, and Remote Sensing of Aerosols Formed in the Atmospheric Hydrolysis of Uranium Hexafluoride; DE86 006341, 1984.

    13. [13]

      (13) Song, W. D. Study on Kinetics Mechanism of Pyrohydrolysis Reaction about UF4 and UO2F2 with Steam-Gas; Technological Information Institute of China: Beijing, 1965. [宋维端. UF4 和UO2F2 与过热蒸汽作用的动力学机理的研究. 北京: 中国科技情报研究所, 1965.]

    14. [14]

      (14) Kang, S. F.; Zhao, J. Journal of Nuclear and Radiochemistry 1998, 20 (4), 202. [康仕芳, 赵君. 核化学与放射化学, 1998, 20 (4), 202.]

    15. [15]

      (15) Dong, X. Y.; Zheng, X. B.; Song, Y. L. Journal of Nuclear and Radiochemistry 2014, 36 (3), 181. [董晓雨, 郑小北, 宋昱龙. 核化学与放射化学, 2014, 36 (3), 181.]

    16. [16]

      (16) Lu, C. H.; Sun, Y.; Chen, W. K.; Qiu, S. Y. Nuclear Science and Techniques 2005, 16 (3), 145.

    17. [17]

      (17) Zhong, J. R.; Shao, L.; Yu, C. R.; Ren, Y. M. Acta Phys. -Chim. Sin. 2015, 31 (Suppl.), 25. [仲敬荣, 邵浪, 余春荣, 任一鸣. 物理化学学报, 2015, 31 (Suppl.), 25.] doi: 10.3866/PKU.WHXB201410311

    18. [18]

      (18) Stefaniak, E. A.; Darchuk, L.; Sapundjiev, D.; Kips, R.; Aregbe, Y.; Grieken, R. V. Journal of Molecular Structure 2013, 1040, 206. doi: 10.1016/j.molstruc.2013.02.012

    19. [19]

      (19) Armstrong, D. P.; Bostick, W. D.; Fletcher, W. H. Applied Spectroscopy 1991, 45, 108.

    20. [20]

      (20) Armstrong, D. P.; Jarabek, R. J. Applied Spectroscopy 1989, 43 (3), 461. doi: 10.1366/0003702894203002

    21. [21]

      (21) Ho, D. L. M.; Jones, A. E.; Goulermas, J. Y.; Turner, P.; Varga, Z.; Fongaro, L.; Fanghanel, T.; Mayer, K. Forensic Science International 2015, 251 (1), 61.

    22. [22]

      (22) Lipp, M. J.; Jenei, Z.; Klepeis, J. P.; Evans, W. J. Raman Investigation of the Uranium Compounds U3O8, UF4, UH3 and UO3 under Pressure at Room Temperature; LLNL-TR-522251, 2011.

    23. [23]

      (23) Hunt, R. D.; Andrews, L. J. Chem. Phys. 1993, 98 (5), 3690. doi: 10.1063/1.464045

    24. [24]

      (24) Allen, G. C.; Holmes, N. R. Applied Spectroscopy 1994, 48 (4), 525. doi: 10.1366/000370294775268893

    25. [25]

      (25) Allen, G. C.; Butler, A. T. Journal of Nuclear Materials 1987, 144, 17. doi: 10.1016/0022-3115(87)90274-1

    26. [26]

      (26) Lü, J. B.; Li, G.; Guo, S. L. Spectroscopy and Spectral Analysis 2014, 34 (2), 405. [吕俊波, 李赣, 郭淑兰. 光谱学与光谱分析, 2014, 34 (2), 405.]

    27. [27]

      (27) Zhong, J. R.; Chu, M. F.; Xiao, S. Journal of Nuclear and Radiochemistry 2010, 23 (1), 27. [仲敬荣, 褚明福, 肖洒. 核化学与放射化学, 2010, 23 (1), 27.]

    28. [28]

      (28) Zhong, J. R.; Xiao, S.; Chu, M. F. China Measurement & Test 2009, 35 (2), 112. [仲敬荣, 肖洒, 褚明福. 中国测试, 2009, 35 (2), 112.]

    29. [29]

      (29) Wu, J. G. Recent Advances and Application in Technology of Fourier Transform Infrared Spectroscopy; Science Techniques and Literature Press: Beijing, 1994. [吴瑾光. 主编. 近代傅里叶变换红外光谱技术及应用(上册). 北京: 科学技术文献出版社, 1994.]

  • 加载中
    1. [1]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    2. [2]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    3. [3]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    6. [6]

      Jiaqi Chen Chunhui Luan Yue Sun Qiyun Ma Wangfei Hao Yanjia Wang Xu Wu . Understanding the Dynamics of Heat and Cold through Chemistry: The Interplay of Chemical Energy and Thermal Energy. University Chemistry, 2024, 39(9): 214-223. doi: 10.12461/PKU.DXHX202312020

    7. [7]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    8. [8]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    11. [11]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    12. [12]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    13. [13]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    14. [14]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    15. [15]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    16. [16]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    19. [19]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    20. [20]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

Metrics
  • PDF Downloads(0)
  • Abstract views(443)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return