Citation: CHEN Feng, HUANG Bi-Chun, YANG Ying-Xin, LIU Xiao-Qing, YU Cheng-Long. Synthesis, Characterization and NH3-SCR Activity of MnSAPO-34 Molecular Sieves[J]. Acta Physico-Chimica Sinica, ;2015, 31(12): 2375-2385. doi: 10.3866/PKU.WHXB201510201 shu

Synthesis, Characterization and NH3-SCR Activity of MnSAPO-34 Molecular Sieves

  • Corresponding author: HUANG Bi-Chun, 
  • Received Date: 28 April 2015
    Available Online: 19 October 2015

    Fund Project: 国家自然科学基金(51478191) (51478191)广东省省级科技计划项目(2014A020216003)资助 (2014A020216003)

  • A series of MnSAPO-34 molecular sieves were synthesized by a hydrothermal method for selective catalytic reduction (SCR) of NO with NH3 and characterized using X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), and temperature-programmed desorption (TPD). Three factors were studied, including Mn-loading, calcination temperature, and synthesis time. The MnSAPO-34, which was synthesized in 6 h and calcined at 550 ℃ with the Mn-loading (n(MnO)/n(P2O5)= 0.1), exhibits the highest activity among all the samples, with NOx conversion of almost 100% and N2 selectivity higher than 80%. The results show that the porous and crystalline structures of MnSAPO-34 are greatly affected by addition of manganese, and excessive Mn-loading could result in lower crystallinity and the generation of nonframework manganese oxides. Meanwhile, a decrease in specific surface area and pore volume are observed in MnSAPO-34 with higher Mn-loading; however, the opposite characteristics are observed with a decreasing calcination temperature and shorter synthesis time. Manganese species of high oxidation state, mostly Mn4+, are shown to be on the catalysts surface after high temperature calcination, and the increase ratio of Mn3+ could help to improve the catalytic activity. Under proper synthesis conditions, the incorporation of manganese could improve the adsorption of nitric oxide and ammonia, and the interaction between the strongly adsorbed NO and strongly adsorbed NH3 might be the reason for the enhancement in their catalytic efficiency.
  • 加载中
    1. [1]

      (1) Qi, G. S.; Yang, R. T. Appl. Catal. B-Environ. 2003, 44, 217. doi: 10.1016/S0926-3373(03)00100-0

    2. [2]

      (2) Fang, C.; Zhang, D. S.; Cai, S. X.; Zhang, L.; Huang, L.; Li, H. R.; Maitarad, P.; Shi, L. Y.; Gao, R. H.; Zhang, J. P. Nanoscale 2013, 5, 9199. doi: 10.1039/c3nr02631k

    3. [3]

      (3) Wang, L. S.; Huang, B. C.; Su, Y. X.; Zhou, G. Y.; Wang, K. L.; Luo, H. C.; Ye, D. Q. Chem. Eng. J. 2012, 192, 232. doi: 10.1016/j.cej.2012.04.012

    4. [4]

      (4) Su, Y. X.; Fan, B. X.; Wang, L. S.; Liu, Y. F.; Huang, B. C.; Fu, M. L.; Chen, L. M.; Ye, D. Q. Catal. Today 2013, 201, 115. doi: 10.1016/j.cattod.2012.04.063

    5. [5]

      (5) Huang, P.; Pan, S. W.; Huang, B. C.; Cheng, H.; Ye, D. Q.; Wu, J. L.; Fu, M. L.; Lu, S. L. Acta Phys. -Chim. Sin. 2013, 29, 176. [黄萍, 盘思伟, 黄碧纯, 程华, 叶代启, 吴军良, 付名利, 卢圣良. 物理化学学报, 2013, 29, 176.] doi: 10.3866/PKU.WHXB201210094

    6. [6]

      (6) Yang, C.; Liu, X. Q.; Huang, B. C.; Wu, Y. M. Acta Phys. -Chim. Sin. 2014, 30, 1895. [杨超, 刘小青, 黄碧纯, 吴友明. 物理化学学报, 2014, 30, 1895.] doi: 10.3866/PKU.WHXB201407162

    7. [7]

      (7) Yu, C. L.; Huang, B. C.; Yang, Y. X. Journal of South China University of Technology (Natural Science Edition) 2015, 3, 143. [喻成龙, 黄碧纯, 杨颖欣. 华南理工大学学报(自然科学版), 2015, 3, 143.]

    8. [8]

      (8) Xue, J. J.; Wang, X. Q.; Qi, G. S.; Wang, J.; Shen, M. Q.; Li, W. J. Catal. 2013, 297, 56. doi: 10.1016/j.jcat.2012.09.020

    9. [9]

      (9) Wang, J.; Yu, T.; Wang, X. Q.; Qi, G. S.; Xue, J. J.; Shen, M. Q.; Li, W. Appl. Catal. B-Environ. 2012, 127, 137. doi: 10.1016/j.apcatb.2012.08.016

    10. [10]

      (10) Ye, Q.; Wang, L. F.; Yang, R. T. Appl. Catal. A-Gen. 2012, 427-428, 24.

    11. [11]

      (11) Martí nez-Franco, R.; Moliner, M.; Franch, C.; Kustov, A.; Corma, A. Appl. Catal. B-Environ. 2012, 127, 273. doi: 10.1016/j.apcatb.2012.08.034

    12. [12]

      (12) Martí nez-Franco, R.; Moliner, M.; Concepcion, P.; Thogersen, J. R.; Corma, A. J. Catal. 2014, 314, 73. doi: 10.1016/j.jcat.2014.03.018

    13. [13]

      (13) Deka, U.; Lezcano-Gonzalez, I.; Warrender, S. J.; Picone, A. L.; Wright, P. A.; Weckhuysen, B. M.; Beale, A. M. Microporous Mesoporous Mat. 2013, 166, 144. doi: 10.1016/j.micromeso.2012.04.056

    14. [14]

      (14) Wei, Y. X.; He, Y. L.; Zhang, D. Z.; Xu, L.; Meng, S. H.; Liu, Z. M.; Su, B. L. Microporous Mesoporous Mat. 2006, 90, 188. doi: 10.1016/j.micromeso.2005.10.042

    15. [15]

      (15) Tuš ar, N. N.; Mali, G.; Arć on, I.; Kauč ič , V.; Ghanbari-Siahkali, A.; Dwyer, J. Microporous Mesoporous Mat. 2002, 55, 203. doi: 10.1016/S1387-1811(02)00404-3

    16. [16]

      (16) Rajić , N.; Stojaković , D.; Hoç evar, S.; Kauč ič , V. Zeolites 1993, 13, 384. doi: 10.1016/0144-2449(93)90154-U

    17. [17]

      (17) Gu, J. F.; Agula, B.; Jia, M. L.; Liu, Y. P.; Zhaorigetu, B.; Yuan, Z. Y. Chin. J. Catal. 2010, 31, 322. [顾建峰, 阿古拉, 贾美林, 刘玉萍, 照日格图, 袁忠勇. 催化学报, 2010, 31, 322.]

    18. [18]

      (18) Zhang, R. Z.; Zhao, L. F. Impurity Atoms of Phosphorus Aluminum Molecular Sieve and Its Application; Chemical Industry Press: Beijing, 2009; pp 56-57. [张瑞珍, 赵亮富. 杂原子磷铝分子筛及应用. 北京: 化学工业出版社, 2009: 56-57.]

    19. [19]

      (19) Qi, G. S.; Yang, R. T. J. Phys. Chem. B 2004, 108, 15738. doi: 10.1021/jp048431h

    20. [20]

      (20) Kapteijn, F.; Singoredjo, L.; Andreini, A.; Moulijn, J. A. Appl. Catal. B-Environ. 1994, 3, 173. doi: 10.1016/0926-3373(93)E0034-9

    21. [21]

      (21) Tian, P.; Liu, Z. M.; Wu, Z. B.; Xu, L.; He, Y. L. Catal. Today 2004, 93-95, 735.

    22. [22]

      (22) Thomas, J. M.; Greaves, G. N. Science 1994, 265, 1675.

    23. [23]

      (23) Ramesh, K.; Chen, L. W.; Chen, F. X.; Liu, Y.; Wang, Z.; Han, Y. F. Catal. Today 2008, 131, 477. doi: 10.1016/j.cattod.2007.10.061

    24. [24]

      (24) Wang, L. C.; Liu, Q.; Huang, X. S.; Liu, Y. M.; Cao, Y.; Fan, K. N. Appl. Catal. B-Environ. 2009, 88, 204. doi: 10.1016/j.apcatb.2008.09.031

    25. [25]

      (25) Ristić , A.; Logar, N. Z.; Henninger, S. K.; Kauč ič , V. Adv. Funct. Mater. 2012, 22, 1952. doi: 10.1002/adfm.201102734

    26. [26]

      (26) Ponce, S.; Peň a, M. A.; Fierro, J. L. G. Appl. Catal. B-Environ. 2000, 24, 193. doi: 10.1016/S0926-3373(99)00111-3

    27. [27]

      (27) Kang, M.; Park, E. D.; Kim, J. M.; Yie, J. E. Appl. Catal. A-Gen. 2007, 327, 261. doi: 10.1016/j.apcata.2007.05.024

    28. [28]

      (28) Akolekar, D. B.; Bhargava, S. K. Appl. Catal. A-Gen. 2001, 207, 355. doi: 10.1016/S0926-860X(00)00669-4

    29. [29]

      (29) Lu, X.; Song, C.; Chang, C.; Teng, Y.; Tong, Z.; Tang, X. Ind. Eng. Chem. Res. 2014, 53, 11601. doi: 10.1021/ie5016969

    30. [30]

      (30) Park, E.; Kim, M.; Jung, H.; Chin, S.; Jurng, J. ACS Catal. 2013, 3, 1518. doi: 10.1021/cs3007846

    31. [31]

      (31) Vieira, A.; Tovar, M. A.; Pfaff, C.; Betancourt, P.; Méndez, B.; López, C. M.; Machado, F. J.; Goldwasser, J.; de Agudelo, M. M. R.; Houalla, M. J. Mol. Catal. A-Chem. 1999, 144, 101. doi: 10.1016/S1381-1169(98)00338-0

    32. [32]

      (32) Wu, Z. B.; Jiang, B. Q.; Liu, Y.; Wang, H. Q.; Jin, R. B. Environ. Sci. Technol. 2007, 41, 5812. doi: 10.1021/es0700350

    33. [33]

      (33) Liu, F. D.; He, H. Catal. Today 2010, 153, 70. doi: 10.1016/j.cattod.2010.02.043

    34. [34]

      (34) Guan, B.; Lin, H.; Zhu, L.; Huang, Z. J. Phys. Chem. C 2011, 115, 12850. doi: 10.1021/jp112283g

    35. [35]

      (35) Shu, Y.; Sun, H.; Quan, X.; Chen, S. J. Phys. Chem. C 2012, 116, 25319. doi: 10.1021/jp307038q

    36. [36]

      (36) Yu, C. L.; Wang, L. S.; Huang, B. C. Aerosol Air Qual. Res. 2015, 15, 1017.

    37. [37]

      (37) Vishwanathan, V.; Jun, K. W.; Kim, J. W.; Roh, H. S. Appl. Catal. A-Gen. 2004, 276, 251.

    38. [38]

      (38) Jin, R. B.; Liu. Y.; Wu, Z. B.; Wang, H. Q.; Gu, T. T. Catal. Today 2010, 153, 84. doi: 10.1016/j.cattod.2010.01.039

    39. [39]

      (39) Fang, C.; Zhang, D. S.; Shi, L. Y.; Gao, R. H.; Li, H. R.; Ye, L. P.; Zhang, J. P. Catal. Sci. Technol. 2013, 3, 803. doi: 10.1039/C2CY20670F

  • 加载中
    1. [1]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    2. [2]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    9. [9]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    10. [10]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    13. [13]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    14. [14]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    15. [15]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    19. [19]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    20. [20]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

Metrics
  • PDF Downloads(0)
  • Abstract views(440)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return