Citation:
HAO Hai-Yan, LIU Zhen, ZU Li-Li. Laser-Induced Fluorescence Spectra of the Photolyzed Products of C2H5SSC2H5 by 266 nm Laser[J]. Acta Physico-Chimica Sinica,
;2015, 31(11): 2029-2035.
doi:
10.3866/PKU.WHXB201509231
-
Organic sulfides are an atmospheric pollutant that photolyze in the atmosphere, causing additional pollution. The S―S bond exists not only in organic sulfides but also in some proteins such as L-cystine, and this bond is crucial to the bioactivity of this protein. In this work, we studied C2H5SSC2H5 photolysis at 266 nm, which is the quadruplicated frequency of the common Nd:YAG laser. The laser-induced fluorescence (LIF) spectra detected the photolyzed products, C2H5S radical. Our results show that the C2H5S radical was mainly created by dissociation of the S―S bond in C2H5SSC2H5. We determined the potential energy curves of the S―S, C―S, and C―C bonds in C2H5SSC2H5 at the B3LYP/6-311++G(d,p) level, finding that photolysis at 266 nm caused the S―S and C―S bonds of C2H5SSC2H5 to dissociate at the ground ???2029-1??? state. Nevertheless, photolysis at 266 nm did not photolyze the C―C bond of C2H5SSC2H5. By optimizing the Cs geometry of the C2H5S radical at the ???2029-1??? state and the ???2029-2??? state, we determined the ???2029-2???-???2029-1??? adiabatic transition energy at the CASSCF/6-311++G(d,p) level, and then studied the LIF spectra of the C2H5S radical. The main pathway is dissociation of the S―S bond of C2H5SSC2H5, though the C―S bond in a few C2H5SSC2H5 molecules did dissociate.
-
-
-
[1]
(1) Orr, W. L.; White, C. M. Geochemistry of Sulfur in Fossil Fuels; American Chemical Society: Washington, DC (US), 1990; pp 10-40.
-
[2]
(2) Seinfeld, J. H.; Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, New Jersey, 2012; pp 2003-2020.
-
[3]
(3) Barnes, I.; Hjorth, J.; Mihalopoulos, N. Chem. Rev. 2006, 106 (3), 940. doi: 10.1021/cr020529+
-
[4]
(4) Andreae, M. O. Mar. Chem. 1990, 30, 1. doi: 10.1016/0304-4203(90)90059-L
-
[5]
(5) Song, W. G.; Li, B. J.; Liu, K. Q. Acta Horticulturae Sinica 2004, 31 (2), 263. [宋卫国, 李宝聚, 刘开启. 园艺学报, 2004, 31 (2), 263.]
-
[6]
(6) Jansen, H.; Mü ller, B.; Knobloch, K. Planta Med. 1989, 55 (5), 440. doi: 10.1055/s-2006-962060
-
[7]
(7) Yu, W. T.; Lu, D. Q.; Li, H. 2004, 21, 795. [于文涛, 卢定强. 精细化工, 2004, 21, 795.]
-
[8]
(8) Silva Filho, E. C.; Lima, L. C.; Silva, F. C.; Sousa, K. S.; Fonseca, M. G.; Santana, S. A. Carbohydr. Polym. 2013, 92 (2), 1203. doi: 10.1016/j.carbpol.2012.10.031
-
[9]
(9) Matsumura, S.; Kihara, N.; Takata, T. Macromolecules 2001, 34 (9), 2848. doi: 10.1021/ma001666g
-
[10]
(10) Visscher, P. T.; Taylor, B. F. Appl. Environ. Microb. 1993, 59 (12), 4083.
-
[11]
(11) Iozzi, M. F.; Helgaker, T. J. Phys. Chem. A 2011, 115 (11), 2308. doi: 10.1021/jp109428g
-
[12]
(12) Zhang, Y. H. P.; Evans, B. R.; Mielenz, J. R.; Hopkins, R. C.; Adams, M. W. PloS One 2007, 2 (5), e456.
-
[13]
(13) Karolczak, J.; Grev, R. S.; Clouthier, D. J. J. Chem. Phys. 1994, 101 (2), 891. doi: 10.1063/1.467742
-
[14]
(14) Johnson, M.; Zare, R.; Rostas, J.; Leach, S. J. Chem. Phys. 1984, 80 (6), 2407. doi: 10.1063/1.446991
-
[15]
(15) Nakajima, M.; Miyoshi, A.; Sumiyoshi, Y.; Endo, Y. J. Chem. Phys. 2012, 136 (18), 184311. doi: 10.1063/1.4708809
-
[16]
(16) Carter, C. C.; Atwell, J. R.; Gopalakrishnan, S.; Miller, T. A. J. Phys. Chem. A 2000, 104 (40), 9165. doi: 10.1021/jp001835z
-
[17]
(17) Nakajima, M.; Toyoshima, H.; Sato, S.; Tanaka, K.; Hoshina, K.; Kohguchi, H.; Sumiyoshi, Y.; Ohshima, Y.; Endo, Y. J. Chem. Phys. 2013, 138 (16), 164309. doi: 10.1063/1.4802003
-
[18]
(18) Kohguchi, H.; Ohshima, Y.; Endo, Y. J. Chem. Phys. 1997, 106 (13), 5429. doi: 10.1063/1.473568
-
[19]
(19) Hoshina, K.; Kohguchi, H.; Ohshima, Y.; Endo, Y. J. Chem. Phys. 1998, 108 (9), 3465. doi: 10.1063/1.475746
-
[20]
(20) Chalyavi, N.; Troy, T. P.; Nakajima, M.; Gibson, B. A.; Nauta, K.; Sharp, R. G.; Kable, S. H.; Schmidt, T. W. J. Phys. Chem. A 2011, 115 (27), 7959. doi: 10.1021/jp203638h
-
[21]
(21) Wine, P.; Nicovich, J.; Hynes, A.; Wells, J. J. Phys. Chem. 1986, 90 (17), 4033. doi: 10.1021/j100408a041
-
[22]
(22) Colin, R.; Goldfinger, P.; Jeunehomme, M. Trans. Faraday Soc. 1964, 60, 306. doi: 10.1039/tf9646000306
-
[23]
(23) Nourbakhsh, S.; Yin, H. M.; Liao, C. L.; Ng, C. Y. A. Chem. Phys. Lett. 1991, 183 (5), 348. doi: 10.1016/0009-2614(91)90391-L
-
[24]
(24) Nourbakhsh, S.; Yin, H. M.; Liao, C. L.; Ng, C. Y. Chem. Phys. Lett. 1992, 190 (5), 469. doi: 10.1016/0009-2614(92)85175-A
-
[25]
(25) Peng, B.; Cao, J. R.; Wen, Y.; Zhong, X.; Zhang, J. M.; Gu, H. G.; Fang, W. G.; Wu, X. J.; Zhu, Q. H. Acta Phys. -Chim. Sin. 1988, 4 (3), 225. [彭勃, 曹建如, 温晔, 钟宪, 张建明, 顾好刚, 方万全, 武小军, 朱起鹤. 物理化学学报, 1988, 4 (3), 225.] doi: 10.3866/PKU.WHXB19880301
-
[26]
(26) Ross, P. L.; Johnston, M. V. J. Phys. Chem. 1993, 97 (41), 10725. doi: 10.1021/j100143a034
-
[27]
(27) Balla, R. J.; Weiner, B. R.; Nelson, H. H. J. Am. Chem. Soc. 1987, 109 (16), 4804. doi: 10.1021/ja00250a008
-
[28]
(28) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02; Wallingford, CT: Gaussian Inc., 2004
-
[29]
(29) Hung, W. C.; Shen, M. Y.; Yu, C. H.; Lee, Y. P. J. Chem. Phys. 1996, 105 (14), 5722. doi: 10.1063/1.472543
-
[30]
(30) Nourbakhsh, S.; Liao, C. L.; Ng, C. J. Chem. Phys. 1990, 92 (11), 6587. doi: 10.1063/1.458295
-
[31]
(31) Zhao, H. Q.; Cheung, Y. S.; Liao, C. X.; Ng, C.; Li, W. K.; Chiu, S. W. J. Chem. Phys. 1996, 104 (1), 130. doi: 10.1063/1.470883
-
[32]
(32) Munk, J.; Pagsberg, P.; Ratajczak, E.; Sillesen, A. J. Phys. Chem. 1986, 90 (12), 2752. doi: 10.1021/j100403a038
-
[33]
(33) Quick, C., Jr.; Weston, R. E., Jr. J. Chem. Phys. 1981, 74 (9), 4951. doi: 10.1063/1.441748
-
[1]
-
-
-
[1]
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064
-
[2]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[3]
Yiting Huo , Xin Zhou , Feifan Zhao , Chenbin Ai , Zhen Wu , Zhidong Chang , Bicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148
-
[4]
Zheng Liu , Yuqing Bian , Graham Dawson , Jiawei Zhu , Kai Dai . Rational constructing of Zn0.5Cd0.5S-diethylenetriamine/g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(9): 111272-. doi: 10.1016/j.cclet.2025.111272
-
[5]
Huakang Zong , Xinyue Li , Yanlin Zhang , Faxun Wang , Xingxing Yu , Guotao Duan , Yuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195
-
[6]
Jiajie Gu , Jiaxiang Gu , Lei Yu . Selenium and Alzheimer's disease. Chinese Chemical Letters, 2025, 36(8): 110727-. doi: 10.1016/j.cclet.2024.110727
-
[7]
Jinhui Jiang , Jiaqi Sun , Yongyi Chen , Lei Zhang , Pengyu Dong . W18O49/Al-doped SrTiO3 S-scheme heterojunction aided by the LSPR effect for full-spectrum solar light-driven photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100145-0. doi: 10.1016/j.actphy.2025.100145
-
[8]
Xibao Li , Yiyang Wan , Fang Deng , Yingtang Zhou , Pinghua Chen , Fan Dong , Jizhou Jiang . Advances in Z-scheme and S-scheme heterojunctions for photocatalytic and photoelectrocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(10): 111418-. doi: 10.1016/j.cclet.2025.111418
-
[9]
Bin Fang , Jiaqi Yang , Limin Wang , Haoqin Li , Jiaying Guo , Jiaxin Zhang , Qingyuan Guo , Bo Peng , Kedi Liu , Miaomiao Xi , Hua Bai , Li Fu , Lin Li . A mitochondria-targeted H2S-activatable fluorogenic probe for tracking hepatic ischemia-reperfusion injury. Chinese Chemical Letters, 2024, 35(6): 108913-. doi: 10.1016/j.cclet.2023.108913
-
[10]
Jia-Mei Qin , Xue Li , Wei Lang , Fu-Hao Zhang , Qian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925
-
[11]
Bicheng Zhu , Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327
-
[12]
Chengxin Chen , Hongfei Shi , Xiaoyan Cai , Liang Mao , Zhe Chen . Enhanced bifunctional photocatalytic performances for H2 evolution and HCHO elimination with an S-scheme CoWO4/CdIn2S4 heterojunction. Acta Physico-Chimica Sinica, 2025, 41(12): 100155-0. doi: 10.1016/j.actphy.2025.100155
-
[13]
Hongrui Zhang , Miaoying Cui , Yongjie Lv , Yongfang Rao , Yu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108
-
[14]
Qishen Wang , Changzhao Chen , Mengqing Li , Lingmin Wu , Kai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147
-
[15]
Guoju Guo , Xufeng Li , Jie Ma , Yongjia Shi , Jian Lv , Daoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024
-
[16]
Mengzhao Liu , Jie Yin , Chengjian Wang , Weiji Wang , Yuan Gao , Mengxia Yan , Ping Geng . P doped Ni3S2 and Ni heterojunction bifunctional catalysts for electrocatalytic 5-hydroxymethylfurfural oxidation coupled hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(9): 111271-. doi: 10.1016/j.cclet.2025.111271
-
[17]
Weilai Yu , Chuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022
-
[18]
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-0. doi: 10.3866/PKU.WHXB202311016
-
[19]
Yudi Cheng , Xiao Wang , Jiao Chen , Zihan Zhang , Jiadong Ou , Mengyao She , Fulin Chen , Jianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156
-
[20]
Shangqian Zhang , Jiaxuan Li , Xuan Hu , Zelong Chen , Junliang Dong , Chenhao Hu , Shuang Chao , Yinghua Lv , Yuxin Pei , Zhichao Pei . H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis. Chinese Chemical Letters, 2025, 36(1): 110314-. doi: 10.1016/j.cclet.2024.110314
-
[1]
Metrics
- PDF Downloads(56)
- Abstract views(817)
- HTML views(18)
Login In
DownLoad: